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Tasmanian devils have spawned two transmissible cancer

clones, known as devil facial tumour 1 (DFT1) and devil facial

tumour 2 (DFT2). DFT1 and DFT2 are transmitted between

animals by the transfer of allogeneic contagious cancer cells by

biting, and both cause facial tumours. DFT1 and DFT2

tumours are grossly indistinguishable, but can be differentiated

using histopathology, cytogenetics or genotyping of

polymorphic markers. However, standard diagnostic methods

require specialist skills and equipment and entail long

processing times. Here, we describe Tasman-PCR: a simple

polymerase chain reaction (PCR)-based diagnostic assay that

identifies and distinguishes DFT1 and DFT2 by amplification

of DNA spanning tumour-specific interchromosomal

translocations. We demonstrate the high sensitivity and

specificity of this assay by testing DNA from 546 tumours and

804 normal devils. A temporal–spatial screen confirmed the

reported geographic ranges of DFT1 and DFT2 and did not

provide evidence of additional DFT clones. DFT2 affects
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disproportionately more males than females, and devils can be co-infected with DFT1 and DFT2.

Overall, we present a PCR-based assay that delivers rapid, accurate and high-throughput diagnosis

of DFT1 and DFT2. This tool provides an additional resource for devil disease management and

may assist with ongoing conservation efforts.
cietypublishing.org
R.Soc.open

sci.5:180870
1. Introduction
Tasmanian devils (Sarcophilus harrisii) are marsupial carnivores endemic to the Australian island of

Tasmania. This species is affected by two transmissible cancers, known as Tasmanian devil facial

tumour 1 (DFT1) and Tasmanian devil facial tumour 2 (DFT2). DFT1 and DFT2 manifest as facial

tumours collectively known as devil facial tumour disease (DFTD) and are transmitted between

animals by the direct transfer of living allogeneic cancer cells, probably by biting [1,2]. Thus, DFT1

and DFT2 are two independent malignant clones, one of which arose from the somatic cells of an

individual female devil (DFT1), the other from a male (DFT2), and which both now propagate

through the devil population via transfer of contagious cancer cells [2–4]. DFT1 was initially reported

in 1996 in northeast Tasmania and is now widespread across the island, causing significant declines in

devil populations [5–7]. DFT2, on the other hand, which was first observed in 2014, has been

reported in only five animals, all located in the Channel, an approximately 550 km2 peninsula in

Tasmania’s southeast [2].

DFTD tumours caused by DFT1 and DFT2 are grossly indistinguishable, but are histologically,

cytogenetically and genetically distinct [2,8]. Differential diagnosis of DFT1 and DFT2 is

routinely performed with histopathology and immunohistochemistry [2,9–11]. Diagnosis can

also be confirmed using cytogenetics, as DFT1 and DFT2 have markedly different karyotypes

[1,2]. Genetic methods, based on microsatellite and major histocompatibility complex

(MHC) genotypes, have also been used to distinguish DFT1 and DFT2 [2]. However, the

presence of host tissue within DFT1 and DFT2 tumour biopsies, as well as allelic variation

across tumour and host populations, often leads to ambiguity with the interpretation of such

genotypes.

DFT1 and DFT2 are foreign tissue grafts in their hosts and must escape the allogeneic immune

system. DFT1 cells down-regulate MHC class I, perhaps contributing to this clone’s low

immunogenicity [12]; the mechanism of DFT2 immune avoidance is unknown. Interestingly, however,

whereas DFT1 equally affects males and females [9], all five devils diagnosed with DFT2 have been

male [2].

DFT1 was first detected in the Channel Peninsula in 2012, shortly before the discovery of DFT2 there

in 2014 [2]. Thus, DFT1 and DFT2 have overlapping host ranges within the Channel Peninsula, and in the

period from December 2012 to June 2015, seven cases of DFT1 and five of DFT2 were reported in the area

[2]. While it is known that a devil can carry two strains, or subclones, of DFT1, derived from different

infections [4], it remains unknown whether a host can possess both DFT1 and DFT2 tumours

simultaneously.

Transmissible cancers have been rarely observed in nature. There are currently eight known naturally

occurring transmissible cancers, five of which affect various species of bivalve molluscs [2,13–15]. In

1996, when DFT1 was first observed, only one other example was known, a sexually transmitted

venereal tumour in dogs [15]. Furthermore, there was no evidence of devil tumours similar to DFTD

prior to 1996 [5,9]. Thus, the discovery of DFT2 was surprising, and suggests that Tasmanian devils

may be particularly vulnerable to the emergence of transmissible cancers [8]. There is a possibility

that additional DFT clones may be present or may have previously existed in the devil population,

but escaped detection. Moreover, the extent of the DFT2 range beyond the Channel Peninsula is not

yet confirmed.

The identification of two transmissible cancers within an interval of 18 years raises important

questions about Tasmanian devils and their susceptibility to transmissible cancers. Here, we describe

the design and validation of a genetic diagnostic test for confirmation of DFT1 and DFT2 in devils.

We use this ‘Tasman-PCR’ test to examine the range of DFT2 and to confirm the absence of additional

DFT clones within a cohort of 546 tumours collected between 2003 and 2016 from more than 69

locations around Tasmania.



Table 1. Coordinates and breakpoint features for structural variants specific to DFT1 and DFT2 used in screen. Coordinates are
relative to the Tasmanian devil reference genome Devil_refv7.0 [4]. [þ] and [2] refer to strand.

clone marker coordinate 1 coordinate 2 breakpoint features

DFT1 DFT1-A Chr2_GL841420 : 441799 [þ] ChrX_GL867598 : 2128339 [2] blunt end

DFT1-B Chr1_GL834488 : 1096676 [2] Chr4_GL856767: 219384 [2] microhomology (AAAA)

DFT2 DFT2-A Chr4_GL856969 : 2309705 [þ] Chr5_GL861630 : 40293 [þ] microhomology (AG)

DFT2-B Chr4_GL856736 : 2811567 [þ] Chr5_GL861700: 1309714 [þ] untemplated sequence insertion

(ATAACTCATAATAGTACAT)
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2. Results
2.1. Development of PCR-based markers for DFT1 and DFT2
DFT1 and DFT2 are both clonal lineages, hence somatic variants that were acquired early during each

lineage’s history may present useful markers for polymerase chain reaction (PCR)-based diagnostic

assays. Interchromosomal translocations are particularly effective markers, as the presence or absence

of an amplification product is the screening endpoint. We assessed a set of interchromosomal

structural variants that had been identified and validated in two DFT1 and in two DFT2 genomes,

respectively, but not found in 34 normal devil genomes [8]. Of these, we selected two putative

DFT1-specific markers (DFT1-A and DFT1-B) and two putative DFT2-specific markers (DFT2-A and

DFT2-B) for further screening (table 1). A triplex PCR assay, named Tasman-PCR, was then

optimized, containing primers specific for DFT1-A (231 base pairs, bp), DFT2-A (321 bp), as well as

positive control primers amplifying the endogenous RPL13A locus (520 bp) [12] (figure 1).
2.2. Normal devil screen
Interchromosomal translocations are more common in cancer than in germline DNA. However, it is

possible that DFT1-A and/or DFT2-A were in fact inherited polymorphisms present in the

constitutive genomes of the individual devils that spawned the respective clones, and hence may also

be found in the genomes of some normal devils in the population. In order to assess this, we screened

Tasman-PCR across normal DNA from 804 devils sampled between 2003 and 2016 from more than 65

locations in Tasmania, including both non-diseased individuals as well as devils infected with DFT1

and/or DFT2 (table 2; electronic supplementary material, table S1). DNA from three devils (0.4%) was

faintly positive for DFT1-A, and no devils amplified DFT2-A (table 2; electronic supplementary

material, table S1). We further assessed the three DFT1-A-positive DNA samples by amplifying a

panel of microsatellite length polymorphisms. All three samples amplified three or more alleles at one

or more loci, suggesting DNA contamination (electronic supplementary material, table S2A).

Furthermore, all three DNA samples which were positive for DFT1-A also amplified DFT1-B (table 1),

further suggesting the possibility that these normal samples may have been contaminated by DFT1

DNA. Altogether, these results suggest that the tumour DNA markers used in our triplex assay are

highly specific for DFT1 and DFT2, and are likely to be somatic translocations that arose subsequent

to neoplastic transformation in these two clones.
2.3. Analysis of confirmed DFTD tumours
We used the triplex assay to screen 344 confirmed DFTD (DFT1 and DFT2) tumours (table 2;

electronic supplementary material, table S3A). The tumours were collected between 2003 and 2016

from 56 locations in Tasmania, and DFTD status was confirmed through histopathology,

cytogenetics and/or microsatellite genotyping [9,10,16]. In total, 331 of 344 (96.2%) confirmed

DFTD tumours were positive for either DFT1-A or DFT2-A (321 DFT1-A positive, 10 DFT2-A

positive), and no tumours were positive for both DFT1-A and DFT2-A (table 2; electronic

supplementary material, table S3A).
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Figure 1. Tasman-PCR, a DFTD triplex diagnostic PCR. (a) Design of triplex PCR using primers spanning DFT1-A, DFT2-A and RPL13A.
(b) Gel electrophoresis showing amplification products from normal devil DNA, as well as from DFT1 and DFT2 DNA. L, ladder.

Table 2. Devils and tumours screened with Tasman-PCR. DFTD status was confirmed through histopathology, cytogenetics and/or
microsatellite genotyping. DFT1/DFT2 status of DFTD suspected tumours was unknown. ‘Samples’ refers to individuals (normal devils) or
to tumours (DFTD confirmed, DFTD suspected, non-DFTD tumour confirmed or suspected). *, samples showed signs of DFT1 tumour DNA
contamination (see text). Further information about devils and tumours is available in electronic supplementary material, tables S1 and
S3.

tumours
(individuals)

DFT1-A-positive
samples

DFT2-A-positive
samples

DFT1-A and DFT2-A-
negative samples

normal devils 2 (804) 3 (0.4%)* 0 (0%) 801 (99.6%)

DFTD confirmed 344 (259) 321 (93.3%) 10 (2.9%) 13 (3.8%)

DFT1 confirmed 334 (251) 321 (96.1%) 0 (0%) 13 (3.9%)

DFT2 confirmed 10 (8) 0 (0%) 10 (100%) 0 (0%)

DFTD suspected 175 (114) 158 (90.3%) 5 (2.9%) 12 (6.9%)

non-DFTD tumour confirmed or

suspected

27 (25) 0 (0%) 0 (0%) 27 (100%)
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We considered the following three explanations for the 13 remaining confirmed DFT1 tumours

which did not amplify DFT1-A (table 2; electronic supplementary material, table S3A): (i) they

belong to a DFT1 subclone which diverged from a clonal ancestor prior to DFT1-A being acquired;

(ii) they belong to a DFT1 subclone which lost DFT1-A, or acquired mutations within the DFT1-A

primer binding sites or (iii) the biopsy used for DNA extraction included only non-neoplastic host

tissue, or included DFTD cells at levels that were undetectable under our PCR and gel

electrophoresis conditions. To distinguish between these three possibilities, we first screened the 13

tumours with DFT1-B and DFT2-B (table 1); none of these samples amplified either marker. Next,

we screened the 13 samples, together with their matched hosts, across a panel of four polymorphic

microsatellites (electronic supplementary material, table S2B). None of the 13 samples showed the

characteristic microsatellite profiles of DFT1 or DFT2 [2], suggesting that explanations (i) and (ii)

above are unlikely to apply. Furthermore, all 12 of these samples for which matched host tissue was

available showed microsatellite profiles which were identical to those of their hosts (electronic

supplementary material, table S2B). Thus, it appears likely that the biopsies used for DNA extraction

carried only host DNA, or that DFTD DNA was present at a low level and was undetectable under

our assay conditions (explanation (iii) above). To further assess this possibility, we performed an

additional DNA extraction on one of these tumours and confirmed DFT1-A positivity on this second

attempt. Thus, variation in the contribution of neoplastic cells to tumour tissues should be

considered in the event of an unexpected negative finding.
2.4. Tumour screen
We used Tasman-PCR to screen DNA from 175 suspected DFTD tumours collected from 114 devils

(table 2; electronic supplementary material, table S3B). In these cases, DFTD was suspected due to

gross morphology and clinical presentation, but no records of confirmed diagnosis based on



Huon  N = 5

Forestier  N = 77

West Pencil Pine N = 120

Bronte  N = 35

Kempton  N = 20

Freycinet  N = 6

Narawntapu  N = 15

DFT1

Mole Creek  N = 8

Fentonbury  N = 28

Buckland  N = 14

Grove/Crabtree/Lower Longley N = 10

Channel Peninsula  N = 37

Leslie Vale, Neika  N = 8

Granville Harbour  N = 9

Takone  N = 17 DFT2

Stony Head  N = 11

Figure 2. Distribution of DFT1 and DFT2. Locations of 494 tumours, sampled from 360 devils between 2003 and 2016, which
amplified either DFT1-A (479 tumours) or DFT2-A (15 tumours). Each tumour is represented by a blue (DFT1) or red (DFT2)
dot. The Channel Peninsula, where all DFT2-A-positive tumours were found, is located in Tasmania’s southeast.
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histopathology, cytogenetics or microsatellite genotyping were found. Of these suspected DFTDs, 158

were positive for DFT1-A (90.3%) and five were positive for DFT2-A (2.9%) (table 2; electronic

supplementary material, table S3B). None of the 12 DFT1-A and DFT2-A negative tumours were

positive for DFT1-B or DFT2-B. Microsatellite genotyping confirmed that all nine DFT1-A and DFT2-A

negative suspected DFTDs for which microsatellites could be amplified and for which matched host

tissue was available were identical to their matched host (electronic supplementary material, table

S2C). This suggests that these samples may be DFTD tumours from which only non-neoplastic host

tissue was sampled for DNA extraction (explanation (iii) above); alternatively, it is possible that these

samples may be non-DFTD host-derived lesions.

We next used Tasman-PCR to screen DNA from 27 confirmed or suspected non-DFTD lesions. These

lesions included cutaneous lymphomas, papillomas, squamous cell carcinomas and other carcinomas

(table 2; electronic supplementary material table, S3C). None of the lesions amplified either DFT1-A

or DFT2-A. Microsatellite alleles were analysed in the 27 non-DFTD samples, together with their

matched hosts when available. Several samples had one or two microsatellite alleles which were not

detectable within the tissues of the matched host (electronic supplementary material, table S2D).

However, non-DFTD lesions from different individuals had different genotypes. This suggests that the

tumour-unique microsatellite alleles arose via somatic mutation of matched host alleles and does not

support the possibility that any of these 27 samples represent additional transmissible cancers.

2.5. Distribution of DFT1 and DFT2
Of the 494 confirmed or suspected DFTD tumours which amplified a DFT1 or DFT2 tumour marker in

Tasman-PCR, 15 tumours from 11 devils were positive for DFT2-A (electronic supplementary

material, tables S3A and S3B). These DFT2-A-positive animals were all sampled in the Channel

Peninsula between 2014 and 2016 (figure 2). The remaining 479 tumours, collected from 63
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outcome of Fisher’s exact test for no difference in DFT1 and DFT2 host gender and * denotes significance ( p , 0.05).
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locations between 2003 and 2016, amplified DFT1-A (figure 2). Although we cannot rule out the

possibilities that the current or historical DFT2 range extends beyond the Channel Peninsula, or

that DFT2 arose prior to 2014, our results support the idea that DFT2 may have arisen recently

within the Channel Peninsula.

2.6. DFT1 and DFT2 host gender
Our screen detected 11 animals with DFT2 tumours, including the five previously reported cases [2]. Of

these, nine (82%), were male (Fisher’s exact test for no difference in DFT2 host gender, p ¼ 0.033)

(figure 3). By contrast, DFT1 tumours were equally distributed between male and female hosts (of the

345 animals with one or more DFT1 tumours with known gender, 165 (47.8%) were male and 180

(52.2%) were female (Fisher’s exact test for no difference in DFT1 host gender, p ¼ 0.451), as

previously reported [9] (figure 3). This skew towards male hosts in DFT2 suggests that this clone may

preferentially affect males, although larger numbers of DFT2 cases will be required to confirm this.

2.7. Co-infection with DFT1 and DFT2
It has previously been noted that individual devils can simultaneously harbour tumours belonging to

two distinct strains, or subclones, of DFT1 [4]. As the DFT1 and DFT2 ranges overlap in the Channel

Peninsula, we investigated the possibility of co-infection with DFT1 and DFT2. We identified two

individuals, Devil 812 and Devil 818, which carried both DFT1 and DFT2 tumours (figure 4). Devil

812 was a 4-year-old female with three facial tumours, denoted 812T1, 812T2 and 812T3. 812T2 and

812T3 were both DFT1, whereas 812T1 was DFT2 (figure 4). Devil 818, a 2-year-old male, carried a

large DFT2 tumour, 818T1, ventral to the left ear, as well as a DFT1 tumour on the hard palate, 818T2

(figure 4). Devil 818 also had a DFT2 mass in the left pre-auricular lymph node (818T3) (figure 4),

probably a metastasis from 818T1.
3. Discussion
We present a PCR-based genetic diagnostic test for DFTD, Tasman-PCR, which complements

existing diagnostic methods to provide rapid and cost-effective confirmation of DFT1 and DFT2.

The test uses amplification of tumour-specific interchromosomal translocations to identify DFT1

and DFT2, and to distinguish between DFTD (DFT1 or DFT2) and non-DFTD tumours in devils.

We used the assay to screen 546 devil tumours collected from more than 69 locations in Tasmania

between 2003 and 2016.

Although the assay that we describe provides a useful method for diagnosis of DFT1 and DFT2, it

has some limitations. Users should be aware of the potential for DNA cross-contamination to produce
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Figure 4. Co-infection with DFT1 and DFT2. Two devils were identified with both DFT1 and DFT2 tumours, (a) Devil 812 and
(b) Devil 818. T1, T2, T3, T4 denote individual tumours from each animal, some of which are depicted in photographs. PCR
results from each tumour are shown on gel and H denotes normal DNA from the matched host. D1, D2 and L denote DFT1
control, DFT2 control and ladder respectively. In Devil 818, T3 was a tumour involving the left pre-auricular lymph node and
T4 was a suspected tumour found in the left submandibular lymph node.
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false positive results, and electrophoresis-based detection methods have limited sensitivity in samples

with very low tumour cell fractions. DFT1 and DFT2 tumours are heterogeneous tissues which

contain both neoplastic and normal cell components. While very little input material is required for

PCR, which allows for minimally invasive small biopsies, it can also increase the likelihood of

obtaining biopsies that contain no neoplastic cells, leading to false negative results. Moreover,

although we did not find evidence of germline DFT1-A or DFT2-A in a screen of 804 normal devils,

we cannot exclude the possibility that these markers are rare polymorphisms in devil populations;

we suggest that users analyse matched normal tissues alongside tumours to control for this

possibility. Additionally, although our screen did not identify any clear cases of DFT1 or DFT2

tumours negative for DFT1-A or DFT2-A, respectively, it is possible that such lineages may have

previously arisen or may occur in future. Users encountering unexpected negative results should

perform PCR for additional markers, such as DFT1-B and DFT2-B (table 1) as well as repeating DNA

extraction and PCR from a separate biopsy of the same tumour. Importantly, this assay is designed

to be complementary with other established DFT1 and DFT2 diagnostic methods, such as histology

and cytogenetics, while being rapid, scalable and minimally invasive. Furthermore, it would be

possible to develop this method to obtain a real-time diagnosis in the field with the use of portable

PCR laboratories [17,18].

The discovery of two transmissible cancers in Tasmanian devils raises the possibility that

additional, so far undetected, transmissible cancer clones exist within devil populations. In this

study, we screened 546 Tasmanian devil tumours, collected between 2003 and 2016 from more than

69 locations in Tasmania (table 3). In total, 479 (87.7%) were DFT1 and 15 (2.7%) were DFT2; the

remaining 52 (9.5%) were either confirmed or suspected host-derived non-DFTD lesions (27, 4.9%)

or biopsies that shared identical microsatellite profiles with their matched hosts (as well as four

biopsies for which matched host tissue was unavailable or microsatellites could not be amplified)

(25, 4.5%) (table 3). Thus, this screen has not detected evidence for additional transmissible cancers

in Tasmanian devils. However, the method provides a useful tool for devil tumour monitoring and

surveillance.

DFT1 had been detected in the Channel Peninsula prior to the discovery there of DFT2, and previous

studies have shown that different DFT1 strains, or subclones, can co-infect one host [4]. Here, we

confirmed that DFT1 and DFT2 can also co-infect the same devil. Co-infections of these two

phenotypically similar DFTs highlight the importance of careful monitoring, as competition for a

limited host devil population may influence the evolution of virulence [19].



Table 3. Results of screen of 546 Tasmanian devil tumours. ‘No information on similarity to matched host’ denotes tumours for
which matched host DNA was unavailable or for which microsatellite loci failed to amplify.

marker amplified number of tumours

DFT1-A 479

DFT2-A 15

RPL13A only 52

27 non-DFTD lesions

21 microsatellite alleles identical to matched host

4 no information on similarity to matched host

total 546
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Of the 11 DFT2 cases that we detected, nine involved a male host (Fisher’s exact test for no

difference in DFT2 host gender, p ¼ 0.033). This apparent preference for male hosts may reflect

underlying transmission dynamics. Alternatively, it is possible that females are less susceptible to

DFT2, perhaps due to the recognition of Y chromosome-derived allogeneic antigens [8].

Nevertheless, we detected two females with DFT2 tumours, confirming that this disease does not

exclusively affect males. The gender bias observed in DFT2 may impact devil population

structures by reducing overall male devil abundance; over time, this may decrease reproductive

success and increase inbreeding by limiting mating opportunities. Furthermore, if DFT2 is largely

excluded from female hosts, this may affect the future potential for this clone to survive, perhaps

selecting for the emergence of DFT2 subclones with balanced host gender proclivity through Y

chromosome loss [8].

Overall, this study presents Tasman-PCR, a PCR-based assay for rapid, high-throughput diagnosis of

DFT1 and DFT2 in Tasmanian devils. By screening 546 tumours, we have documented the distributions

of DFT1 and DFT2, and identify two devils co-infected with both clones. Our analysis does not provide

evidence for additional DFTD clones beyond DFT1 and DFT2. The co-occurrence of two transmissible

cancer clones in Tasmanian devils presents unique challenges for the conservation of this iconic

species. The genetic diagnostic screening tools described here provide important additional resources

for population monitoring and disease surveillance.
4. Material and methods
4.1. Sample collection and DNA extraction
Biopsies were collected from wild or captive Tasmanian devils or from animals whose carcasses were

found as roadkill. Tumour and host (ear, liver, spleen, blood, gonad or submandibular lymph node)

tissue biopsies were collected into either RNAlater or ethanol. Fine needle aspirates collected into a

1 : 1 solution of Buffer AL (Qiagen) : PBS were sampled from tumours that were too small to biopsy.

A subset of tumours were previously confirmed as DFT1 or DFT2 using histopathology, cytogenetics

or microsatellite genotyping [9,10,16]. Genomic DNA was extracted using the Qiagen DNeasy Blood

and Tissue Kit. Genomic DNA was amplified using the Illustra GenomiPhi V2 DNA Amplification Kit

(GE Healthcare) prior to PCR amplification.
4.2. Selection of markers
Two markers for DFT1 (DFT1-A and DFT1-B) and two markers for DFT2 (DFT2-A and

DFT2-B) were evaluated (table 1). All four markers amplified products that were DFT1/DFT2-

specific in a preliminary screen. DFT1-A and DFT2-A were selected for development of the

triplex assay; DFT1-B and DFT2-B can be used to provide additional diagnostic confirmation if

required.
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4.3. Tasman-PCR amplification and gel electrophoresis

Primers used in this study are as follows:
lsocietyp
marker
 location
 expected product length
 sequence (50 to 30)
u
blish
DFT1-A
 Chr2_GL841420:ChrX_GL867598
 231 bp
ing.
AGTAAAAATGCAATAGGCCCAGG

GGTGATGGCAGATTTCAGCTAAG
org
DFT1-B
 Chr1_GL834488:Chr4_GL856767
 284 bp
R.
GTACTGATTTCCTGCCAGTCTCTT

GGAACAATAGCATTGGTAAAGGG
Soc.
DFT2-A
 Chr4_GL856969:Chr5_GL861630
 321 bp
ope
AGGGGATCATTCATAGAGAACACTT

CTATAGCTGATCTATGGGAAGACAATG
n
sc
DFT2-B
 Chr4_GL856736:Chr5_GL861700
 360 bp
i.5:
GAAGGATATTGTATCTTCAGATGGC

ATAATCTCTTCTCGCTTAAGGTGACTC
180870
normal (RPL13A

locus)
Chr3_GL849778
 520 bp
 CCCCACAAGACCAAGCGAGGC

ACAGCCTGGTATTTCCAGCCAACC
The triplex PCR was performed in 20 ml reactions with 2 units Qiagen Taq Polymerase, 1X CoralLoad

PCR buffer, 0.2 mM each dNTP and approximately 20 ng genomic DNA per reaction. Primers (Sigma-

Aldrich) were at a final concentration of 0.4 mM (DFT1-A and DFT2-A primers) or 0.8 mM (RPL13A
primers). Amplification was performed using a Nexus GS-1 Thermal Cycler (Eppendorf) with the

following conditions:
temperature (8C)
 time
 cycles
94
 3 min 30 s
 1
94
 30 s
 30
60
 30 s
72
 30 s
72
 5 min
 1
Single (non-triplex) PCRs, including those involving DFT1-B and DFT2-B, were performed with the

same conditions, with primers at a final concentration 0.4 mM. Gel electrophoresis was performed with a

3% agarose gel and products were detected using ethidium bromide. Samples with weak amplification

bands were identified, and PCR was repeated with increased DNA input.
4.4. Microsatellite genotyping
Microsatellite amplification and fragment size detection was performed across four loci (C, D, N and F)

as previously described [2] and analysed using Fragman [20].

Ethics. Animal procedures followed a Standard Operating Procedure that was approved by the General Manager of the

Natural and Cultural Heritage Division in the Tasmanian Government Department of Primary Industries, Parks, Water

and the Environment (DPIPWE), in agreement with the DPIPWE Animal Ethics Committee, or under University of

Tasmania Animal Ethics Permits A0014976, A0010296, A0013326 and A0016789. The project was approved by the

University of Cambridge, Department of Veterinary Medicine Ethics and Welfare Committee (CR191). We were not

required to complete further ethics assessments (beyond animal ethics) prior to conducting this research. We were

not required to obtain further permissions (beyond animal ethics) prior to carrying out fieldwork.
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