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The canine transmissible venereal tumour (CTVT) is a

transmissible cancer that is spread between dogs by the

allogeneic transfer of living cancer cells during coitus. CTVT

affects dogs around the world and is the oldest and most

divergent cancer lineage known in nature. CTVT first emerged

as a cancer about 11 000 years ago from the somatic cells of an

individual dog, and has subsequently acquired adaptations for

cell transmission between hosts and for survival as an

allogeneic graft. Furthermore, it has achieved a genome

configuration which is compatible with long-term survival.

Here, we discuss and speculate on the evolutionary processes

and adaptions which underlie the success of this remarkable

lineage.
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Introduction
The canine transmissible venereal tumour (CTVT)

(Figure 1a) is a cancer that first emerged as a tumour

affecting an individual dog that lived about 11 000 years

ago [1��,2��,3��]. Rather than dying together with its

original host, the cells of this cancer are still alive today,

having been passaged between dogs by the transfer of

living cancer cells during coitus (Figure 1b). The genome

of CTVT, which has recently been sequenced, bears the

imprint of the evolutionary history of this extraordinary

cell lineage [1��]. Furthermore, the genome variation

captured in global CTVT populations has highlighted

some of the unique adaptations that have driven this

lineage to become the longest-living and most prolific

cancer known in nature. This ‘cancer which survived’ is a

remarkable biological entity which illustrates that evolu-

tion can drive a transition from mammalian somatic cell to

obligate colonial parasite.
www.sciencedirect.com 
The canine transmissible venereal tumour: origins of a

global parasite

CTVT is a sexually transmitted cancer that affects dogs

and usually manifests clinically with tumours associated

with the external genitalia of both male and female

animals (Figure 1a). Although CTVT first appeared in

the veterinary literature at least two hundred years ago

[4], its uniqueness as a transmissible cancer was not noted

until much later [2��,3��,5–7]. CTVT is endemic in at

least ninety countries worldwide across all inhabited

continents and its distribution is linked to the presence

of free-roaming dogs [8].

Although CTVT is found worldwide, the patterns of

genetic identity detected in tumours located on different

continents indicate a single clonal origin for the disease

[2��,3��]. Analysis of a mutational process with clock-like

features, as well as comparison of microsatellite variation

between tumours and between tumours, dogs and wolves,

suggest that the lineage first arose as a cancer several

thousand years ago [1��,2��,3��]. By searching for genetic

variation present in the CTVT genome and comparing it

with genotypes associated with specific traits in modern

canids, a picture of the ‘founder dog’ that first spawned

CTVT has emerged [1��,2��,3��]; it appears that this

individual was more closely related to modern dogs than

modern wolves and had relatively low levels of genomic

heterozygosity. This animal was probably of medium or

large size with an agouti or solid black coat. The XO

karyotype and genotype found in CTVT tumours pre-

cludes conclusions about the founder animal’s gender

[1��,9].

CTVT probably first arose from a somatic cell, possibly a

tissue macrophage or a dendritic cell [10,11], of this

‘founder animal’ via evolutionary processes that are com-

mon between all cancers. The life-history of a cancer is

generally characterised by successive waves of clonal

outgrowth, driven by the acquisition of positively select-

ed ‘driver’ mutations [12]. The molecular processes pro-

moted by driver mutations can shed light on the biological

pathways underlying cancer, such as proliferative auton-

omy, resistance to cell death and genomic instability [13].

CTVT shares a number of putative driver mutations with

human cancers, some of which possibly occurred in the

original CTVT tumour. These include a rearrangement

involving MYC, homozygous deletion of the CDKN2A
locus, homozygous loss of SETD2 and a rearrangement

involving ERG that creates a potential in-frame NEK1-
ERG fusion gene [1��,5]. There is, however, no evidence
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Canine transmissible venereal tumour (CTVT). (a) CTVT causes tumours most often associated with the external genitalia of both male (left) and

female (right) dogs. (b) CTVT first emerged from the somatic cells of the ‘founder dog’ about 11 000 years ago. Since then, it has been transmitted

between individual dogs by the allogeneic transfer of living cancer cells.
to suggest that the original CTVT or its host were

particularly extraordinary; we cannot know if the original

CTVT was metastatic in its founder dog, or even if the

original CTVT was the cause of its founder’s death.

Nevertheless, we presume that a series of highly improb-

able events next triggered CTVT to become a transmis-

sible cancer (Table 1).

Crossing the gaps

Cancers frequently acquire features that cause cells to

depart from a primary tumour and establish new tumours

in distant sites of the body via a process of metastasis.

CTVT, however, has acquired adaptations for the trans-

mission of cancer cells to new hosts. The family Canidae

may have been particularly at risk for the establishment of

a sexually-transmitted cancer due to the existence of the

long-lasting coital tie that is peculiar to this group. The
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coital tie may last for up to 30 minutes, and may lead to

injuries to the genital mucosa; such conditions may thus

provide an exceptional opportunity for the exchange of

cancer cells between individuals [14]. Despite the poten-

tial for mating between dogs and wild canids, including

wolves and coyotes, CTVT has not been reported within

wild canid populations [8]. CTVT tumours are also occa-

sionally found affecting non-genital regions, most com-

monly skin, nasal cavity, lymph node, eye and mouth [8].

As these sometimes occur without genital involvement

[15–17], this suggests that there may be non-coital routes

of CTVT transmission, possibly involving licking, sniff-

ing or parturition.

Transmissibility has presumably had consequences for

CTVT genome evolution. Direct transmission of cancer

cells may select for loss of cell adhesion; indeed, CTVT
www.sciencedirect.com
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Table 1

The cancer which survived. Transmissible cancers must acquire adaptations that allow them to survive as long-lived cell lineages.

Summary of barriers to the emergence of transmissible cancers, and speculation on possible mechanisms acquired by CTVT to

overcome these

Adaptations of transmissible cancers Speculation on possible mechanisms used by CTVT

Transmission between hosts Tumour friability and ulceration, growth in external compartment, transmission during extended

and often injurious canine coitus

Immune evasion Down-regulation of MHC molecules from the cell surface, NK cell avoidance,

recruitment of immunosuppressive microenvironment, inflammation

Maintenance of genome integrity Maintenance or activation of DNA repair processes, telomere stabilisation, negative

selection, mitochondrial genome capture from hosts
tumours are typically highly friable [18–20]. Furthermore,

CTVT tumours are delicately encapsulated and bleed

readily upon contact [20], presumably optimised for the

release of CTVT cells during the friction involved in

coitus. A genetic imprint of the CTVT transmission cycle

was identified with the discovery that approximately 40%

of mutations in CTVT were caused by exposure to ultra-

violet (UV) light from the sun [1��]. Although UV muta-

genesis would be expected to impact only the surface layer

of cells of an ulcerated externally-facing tumour, it is these

very cells, indelibly marked with a UV imprint, which have

sustained the lineage by transfer to new hosts.

The requirement for existence within an external com-

partment with ready access to new hosts may be a barrier

for the emergence of naturally transmissible cancers.

However, a variety of routes of cancer cell transmission

could be envisaged, and depend on the behaviour and

biology of the host species. The Tasmanian devil facial

tumour disease, the only other known naturally occurring

transmissible cancer, is transmitted by biting [21,22],

exploiting the facial biting behaviour that this species

engages in during aggressive interactions. Furthermore, a

transmissible cancer in a laboratory population of ham-

sters was transmissible by cannibalism and mosquitoes

[23–25]. Cancer cells have also rarely been reported to

have spread between two humans within a variety of

contexts, including surgical accident, organ transplant,

in utero and during experimental treatments [26–31].

Once deposited within the breached mucosa of another

animal, CTVT must next overcome perhaps the most

potent obstacle facing transmissible cancers: the immune

system.

Evading the barriers

Although all cancers, including those that remain within a

single host, may have acquired adaptations to escape

immune destruction, transmissible cancers are able to

escape the immune system as an allogeneic graft. The

highly potent immune response to allogeneic grafts is

primarily mediated by direct allorecognition of foreign

major histocompatibility complex (MHC) molecules by
www.sciencedirect.com 
the graft recipient’s T cells [32]. Although MHC mole-

cules are normally expressed by all nucleated cells, both

CTVT and DFTD cells have lost expression of MHC

molecules, presumably via a process of immunoselection

[2,33,34�,35,36]. Similarly, many human cancers modu-

late MHC molecule expression as a mechanism to escape

immune detection [37].

The mammalian immune system has specific mecha-

nisms to detect cells which are not expressing MHC

molecules. Natural killer (NK) cells are specialised lym-

phocytes which become cytotoxic when activated by

‘missing self’, that is, absent MHC. The mechanisms

whereby transmissible cancers escape NK cell killing

remain unclear [38]. The recruitment of an immunosup-

pressive tumour microenvironment leading to immune

tolerance or anergy may be an important feature in

transmissible cancer immune escape [33,39–41]. This

suggestion is supported by the observation that CTVT

rarely metastasises, thus departing from the established

tumour microenvironment, except in immunosuppressed

hosts and newborn puppies [42,43].

Early observations of CTVT revealed that experimental-

ly transplanted tumours frequently undergo immune-

mediated spontaneous regression two to six months after

transplantation [44–46]. This, however, contrasts with

naturally occurring CTVT, where spontaneous regression

has not been consistently reported [14,47,48]. The im-

mune response to CTVT may be influenced by the site of

tumour transplantation (experimentally transplanted

CTVT tumours are usually injected subcutaneously)

and the concurrent presence of injuries and inflammation.

It is also possible that there is variation in susceptibility to

CTVT within the dog population that influences clinical

progression and disease course [49]. This is supported by

the observation that CTVT is usually found at low

prevalence within affected dog populations [8].

Thousands of years of passaging between allogeneic hosts

has presumably exerted powerful immunoselective pres-

sures on CTVT. Signatures of this process may be present

in the CTVT genome, possibly acting to prevent mutation
Current Opinion in Genetics & Development 2015, 30:49–55
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of cell surface antigens. However, CTVT has possibly

faced yet another selective challenge: maintaining its

genome integrity over thousands of years despite the

irreversible accumulation of mutations.

Surviving the millennia

Genetic variation, caused by the accumulation of somatic

mutations, is the raw material upon which natural selec-

tion operates to drive the outgrowth of cancer [12]. Thus,

genome instability and loss of DNA repair pathways have

been described as ‘enabling characteristics’ of cancer [13],

and most human cancers carry a few thousand point

mutations as well as structural variants and aneuploidy

[12,50]. Most of these mutations are considered to be

selectively neutral, captured in the cancerous clone by

hitchhiking together with a small number of positively

selected driver mutations. Interestingly, negative selec-

tion, operating to curb the accumulation of mutations that

decrease fitness, has not been robustly detected in cancer

[51–53].

The exceptionally long lifespan of CTVT as a cancer

raises the possibility that the accumulation of mutations

has become a burden rather than an advantage in this
Figure 2
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lineage. Indeed, the CTVT genome has acquired approx-

imately 1.9 million somatic substitution mutations, as

well as thousands of structural rearrangements, copy

number changes and retrotransposon insertions [1��].
Interestingly, however, despite the enormous number

of mutations and marked aneuploidy, the genomic rear-

rangements and microsatellite alleles observed in CTVT

tumours collected from different continents are remark-

ably similar [1��,2��,3��,7,9,54]. It is possible that CTVT

has maintained or activated DNA repair and telomere

stabilisation mechanisms that safeguard its genome

against further mutation and instability. Additionally,

given the large mutation burden already carried by

CTVT, its genome may be particularly sensitive to fur-

ther mutation such that negative selection acts to main-

tain stability. It is interesting that the oldest human

cancer lineage, the HeLa cell line, which has continued

to survive by passaging in laboratory cell culture for more

than sixty years, also appears to have a relatively stable

genome in terms of point mutation [55�].

The occasional capture of mitochondrial DNA from its

hosts appears to be one mechanism acquired by CTVT

to support long-term survival [56��] (Figure 2). The
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ondrial genomes derived from tumours in different dogs do not share a

ondria from their hosts [56��]. CTVT cells (grey) are shown acquiring

l CTVT mitochondrial genome (black), which presumably carried a

mes (red and blue) via a process of genetic drift or positive selection.
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mitochondrial genome is gene rich, has a particularly high

mutation rate [52], and encodes proteins involved in

energy metabolism. The observation that mitochondrial

DNA in CTVT is not clonal, but rather appears to have

been acquired by periodic horizontal transfer from dogs,

suggests that replacement of CTVT mitochondrial DNA,

which presumably was carrying large numbers of possibly

deleterious mutations, provided a selective advantage to

the lineage (although we cannot exclude the possibility

that CTVT acquired host mitochondrial DNA via purely

neutral processes) [56��]. Shuttling of mitochondria be-

tween cells may be more common than previously appre-

ciated, as mitochondrial DNA has been observed to

exchange between human cells in vitro as well as between

normal and cancer mouse cells in vivo [57,58�]. Although

horizontal DNA transfer is in general a rare phenomenon

in the animal kingdom, it has been occasionally described

[59]. In one interesting example, horizontal DNA transfer

was observed in ancient asexual bdelloid rotifers, and it

was suggested that capture of environmental DNA may

compensate for absence of sexual recombination and loss

of gene function due to mutation [60�,61].

Influencing each other

Parasites sometimes directly influence their hosts’ behav-

iour or physiology so as to optimise transmission to new

hosts [62]. Given that CTVT has co-existed with its host

for millennia, one could speculate that it may have

acquired mechanisms to manipulate its hosts’ sexual

receptiveness, oestrus cycle timing or smell preferences

to enhance its chances of transmission. Interestingly, it

appears that oestrogen receptor expression differs be-

tween the vaginal epithelium of CTVT-affected females

and control females during certain stages of the oestrus

cycle, suggesting that CTVT may modulate the local

tissue environment [63]. Furthermore, there is evidence

that CTVT may stimulate erythropoietin production by

its host, or possibly directly produce erythropoietin via a

paraneoplastic process [14]; a consequent production of

red blood cells may compensate for blood loss via tumour

bleeding, thus protecting its host from anaemia. Given

that they carry a conspecific genome, transmissible can-

cers may be uniquely placed to directly manipulate the

biology of their hosts.

Conclusion
Transmissible cancers are very rare in nature; indeed,

naturally occurring transmissible cancers have been de-

scribed only twice. Given that cancer itself is a common

condition, both in humans and animals, it is clear that

there is a very low probability for a cancer to develop into

a transmissible form. In order to become transmissible, a

cancer must acquire adaptations both to support the

physical transmission of living cancer cells between hosts,

and to escape the immune system within an allogeneic

host. Once transmissible, a cancer must acquire a genome

configuration that is compatible with long-term survival.
www.sciencedirect.com 
The genome and biology of CTVT have started to

illuminate how this particular cancer has become trans-

missible, and future research may reveal fundamental

features that drive cancers to become long-lived parasites.
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