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SUMMARY
The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor
disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharma-
cological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB
tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed
tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked
phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 pre-
vented tumor growth in xenograft models and restored MHC class I expression. This link between the hyper-
active ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance
provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunothera-
peutic strategy to save Tasmanian devils from DFTD.
INTRODUCTION

Cancer cells do not usually transmit between individuals. No hu-

man examples of transmissible cancers are known apart from

rare iatrogenic cases during surgery and transplantation or ma-

terno-fetal transmission (Isoda et al., 2009; Matser et al., 2018;
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Figure 1. A Pharmacological Screen Identified ERBB-Specific Vulnerability of DFTD

(A) The targets of the 69 drug hits in the 4-point drug screen showing a reduction in cell viability in at least 1 of the 4 DFTD cell lines compared with healthy

fibroblasts.

(legend continued on next page)
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devils (Murchison et al., 2010, 2012; Pearse and Swift, 2006;

Stammnitz et al., 2018), a sexually transmitted sarcoma in

dogs (Frampton et al., 2018; Murchison et al., 2014; Murgia

et al., 2006), and leukemia-like cancers in mollusks (Metzger

et al., 2015, 2016). Genetic studies provided invaluable insights

into these unusual cancers but the molecular underpinnings of

malignancy and transmissibility remain poorly understood.

DFTD is an allogeneic graft of Schwann cell origin, which is

transmitted by direct transfer of living cancer cells from one indi-

vidual to another as a result of biting behavior during feeding or

mating interactions (Murchison et al., 2010; Pearse and Swift,

2006). Diseased devils succumb to the disease within months

(Loh et al., 2006a), rendering DFTD a serious threat to the survival

of the population of the largest living marsupial carnivore.

Several mechanisms are thought to confer the tumor cells with

the property of being successfully transmitted between individ-

ual Tasmanian devils, including the lack of rejection due to the

low expression levels of major histocompatibility complex

(MHC) class I genes and diminished genetic diversity (Siddle

et al., 2007, 2013). Despite recent efforts, vaccines and treat-

ments showed limited success against DFTD (Kreiss et al.,

2015; Tovar et al., 2017). A second transmissible cancer was

discovered in 2014 (Pye et al., 2016), which has been termed

DFT2 to distinguish it from the first transmissible DFTD, now

termed DFT1. In this study DFTD refers to DFT1, first identified

in 1996 (Pearse and Swift, 2006).

In this study we investigate DFTD-specific aberrant signaling

pathways in order to understand and exploit the underlying mo-

lecular wiring of this transmissible cancer for potential therapeu-

tic avenues.

RESULTS

ERBB-Specific Vulnerability of DFTD Identified by
Pharmacological Screening
To address the inherent limitations of working with non-model

organisms such as the Tasmanian devil, we characterized cell

lines and primary biopsies (Table S1) through an integrative

and unbiased systems-biology approach consisting of pharma-

cological screens, transcriptomics, proteomics, and epigenom-

ics. First, we performed a cell viability screen with over 2,500

selected compounds against 4 DFTD tumor cell lines (T1–T4)

on an automated high-throughput screening platform to identify

potential pharmacological vulnerabilities (Table S2). A fibroblast

cell line of Tasmanian devil origin served as control (Murchison

et al., 2012). Sixty-nine compounds killed at least one out of
(B) Eight-point dose-response curves for lapatinib, erlotinib, and sapitinib in four tu

control (POC).

(C) Expression of the ERBB family members quantified by real-time PCR (n = 3 r

(D) Western blots of the three annotated ERBB proteins (total and phosphorylate

(E) Histopathological analysis of tumor and peripheral nerve biopsies for H&E an

serial consecutive sections. Dotted rectangles indicate magnified areas. Scale b

(F) Quantification of ERBB2 and ERBB3 signal in tumor biopsies, adjacent tissue,

t test.

(G) MetaCore pathway maps enrichments separately for up- (red) and downregu

pathways and with a false discovery rate %0.05 are reported.

(H) Heatmap of RNA-seq expression for genes driving theMetaCore pathway ‘‘ER

CPNE3) and negative (EREG and PTPN12) regulators of the ERBB pathway and

Graphs represent the mean ± SEM. See also Figure S1 and Tables S1, S2, S3, a
four DFTD tumor cell lines, but did not affect the viability of fibro-

blasts, as measured by intracellular ATP levels (Figure 1A; Table

S2). Interestingly, this unbiased approach yielded a substantial

enrichment of tyrosine kinase inhibitors targeting selectively

the ERBB receptors (29/69; 42%) including lapatinib, erlotinib,

and sapitinib (Figure 1B, Table S2). In addition, we observed

DFTD tumor cell-specific killing for inhibitors for histone deace-

tylases (HDAC), BET bromodomains and other potential thera-

peutic targets (Figure 1A, Table S2). The human ERBB family

has four members (EGFR, ERBB2, ERBB3, and ERBB4) (Hynes

and Lane, 2005), of which the devil genome has all orthologs an-

notated except ERBB4. Interestingly, DFTD cells expressed

higher transcript levels of ERBB2 and ERBB3 compared with fi-

broblasts, while EGFRwas barely detectable (Figure 1C). To vali-

date this finding on the protein level, we tested antibodies with

cross-species recognition (Table S1). Western blot analysis

confirmed increased levels of total ERBB2 and ERBB3 in DFTD

cell lines compared with fibroblasts (Figure 1D). The phosphory-

lated residues Y1221/1222 (ERBB2) and Y1289 (ERRB3) are

conserved across species (Table S1), highlighting the evolu-

tionary impact of tyrosine kinase signaling in cancer cells. Like-

wise, sequence alignments with >95% conserved amino acids

in its protein kinase domain suggest that Tasmanian devil

ERBB3 is a pseudokinase as known from other vertebrates.

Phospho-site-specific antibodies provided evidence for persis-

tent activation of ERBB2 and ERBB3 (Figure 1D). These results

were corroborated by immunohistochemical detection of

increased expression of ERBB2 and ERBB3 in primary tumor bi-

opsies of diseased Tasmanian devils compared with adjacent

non-tumor tissue (Figures 1E and 1F). Tumor cells were identified

by the DFTD diagnostic marker Periaxin (PRX) (Murchison et al.,

2010; Tovar et al., 2011). To control for the Schwann cell origin of

DFTD, we also analyzed PRX-positive peripheral nerve tissue

and found that DFTD tumors express elevated levels of ERBB2

and ERBB3 compared with nerve tissue (Figures 1E and F).

Transcriptional profiling of DFTD tumor cell lines T1-T4 and

fibroblasts revealed differentially expressed transcripts and

predicted transcription factors driving this differential gene regu-

lation (Figures S1A–S1D; Table S3). Among the predicted upre-

gulated pathways was ERBB family signaling (Figure 1G). The

genes driving this enrichment included HBEGF, EGF, and

NRG1 that encode ERBB ligands, ERBIN and CPNE3 that

encode positive regulators, and the proto-oncogene FOS (all

increased expression), as well as EREG and PTPN12 (decreased

expression) that encode negative regulators (Figure 1G). We

corroborated the differential expression of the ERBB ligands in
mor cell lines (T1–T4) and fibroblasts (Fib.) shown as normalized percentage of

eplicates).

d).

d immunohistochemistry (IHC) against Periaxin (PRX), ERBB2, and ERBB3 on

ars, 200 and 25 mm.

and peripheral nerve tissue. Statistical significance was calculated by unpaired

lated (blue) transcripts in tumor cell lines versus fibroblasts. Only the first ten

BB-family signaling’’ (bold gene symbols) as well as known positive (ERBIN and

EGFL8 in four DFTD cell lines (T1–T4) and fibroblasts (Fib.).

nd S4.
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Figure 2. Integrative Systems-Level Analysis of DFTD

(A) Principal-component analysis of the 3,894 proteins quantified in all samples. Sampling locations are indicated in capital letters. Cell line denotes the DFTD cell

line 06/2887 (T1) and ‘‘Nerve’’ stands for a healthy nerve biopsy.

(B) Hierarchical clustering of the 987 differentially modulated proteins between tumor and healthy biopsies.

(C) Boxplots of selected protein abundance across conditions in DFTD cell line (T1) and biopsies of tumor (T), spleen (Sp), skin (Sk), and nerve tissue (N).

(legend continued on next page)
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primary DFTD tumor tissue by real-time PCR (Figure S1E). Due to

its marked upregulation, we also included EGFL8, which en-

codes the putative ERBB ligand epithelial growth factor-like

domain multiple 8, in our analysis (Figures 1H, S1E, and S1F).

Of note, variant analysis of our high-coverage RNA sequencing

(RNA-seq) data did not provide any evidence for activating mu-

tations in expressed devil orthologous genes of the involved

pathways (Figures S1G–S1I; Table S4). Together, these data

indicate that DFTD tumor cells, which express high levels of

phosphorylated ERBB2 and ERBB3 and show activation of the

ERBB signaling pathway, are exquisitely vulnerable to ERBB ki-

nase inhibitors.

Characterization of DFTD by Integrated Proteomic and
DNA Methylation Analysis
To unravel the involved signaling cascades in DFTD, we investi-

gated global changes in protein abundance in primary biopsies

of diseased devils by proteomic analysis. This approach

included DFTD tumor tissue as well as healthy control tissue

from skin and spleen from four Tasmanian devils from different

geographical locations as well as peripheral nerve tissue and

the DFTD tumor cell line T1 (Table S1). Overall, we identified

6,672 unique proteins across all samples searched against a

Uniprot reference library of the devil (Figure S2A, Table S5). A to-

tal of 4,981 of these identified proteins were detected across

more than 80% of the samples (Figures S2B and S2C). This un-

biased expression proteomic approach was not specifically de-

signed to enrich for hydrophobic transmembrane proteins such

as ERBB2 and ERBB3. Principal-component analysis of the

3,894 proteins quantified in all samples distinguished the repli-

cates according to the tissue of origin, with the first principal

component accounting for 41.1% of the inter-sample variability

differentiating tumor from healthy samples (Figure 2A). Upon dif-

ferential analysis of tumor versus healthy tissues we defined a tu-

mor-modulated signature of 987 proteins (Figure 2B; Table S5).

Among the most prominent proteins overexpressed in tumor tis-

sue we identified the oncogenic transcription factor STAT3 (Fig-

ures 2C and S2D). Downstream targets of STAT3, among which

matrix metalloproteinase 2 (MMP2) (Figures 2C and S2E–S2G)

(Xie et al., 2004) is also differentially modulated in the tumor bi-

opsies. We detected MMP2, which is secreted as a proprotein,

at high abundance in tumor biopsies but not in the DFTD cell

line. This may be due to technical limitations or could indicate

its extracellular secretion in the tumor microenvironment. Tumor

tissue also expressed high levels of the histone deacetylase

HDAC5 and the SUMO/ubiquitin E3 ligase TRIM28, which is

linked to STAT3 signaling (Tsuruma et al., 2008), as well as low

expression of the tumor suppressor PTGIS (Figure 2C). Further,
(D) Volcano plot of genes with differentially methylated promoters between hea

tumor [red]).

(E) Boxplot of differentially methylated gene promoters for selected genes.

(F) Direct connection proteins network among the 987 tumor-modulated proteins

from the drug screen and RNA-seq. The direct network interactions were built w

phosphorylation interactions. Tumor signature proteins do not have a border, w

candidate from the drug screen has a dashed black border. Of the 632 entities sho

are displayed. The area of each entity is proportional to the number of connections

analysis, or healthy versus tumor for methylation, is colored from blue (down-mo

Boxplot boundaries mark the first and third quartiles, whiskers extending to 1.5 in

Figures S2 and S3 and Tables S5 and S6.
our proteomic analysis confirmed the high expression levels

of the EGFL8 in DFTD tumor cells (Figures 2C, 1H, and S1F).

Pathway enrichment analysis highlighted downregulation of pro-

cesses related to chemotaxis, cell adhesion, and cytoskeleton

remodeling (Figures S2H and S2I; Table S5), some of which

are negatively regulated by STAT3 (Kortylewski et al., 2005; Yu

et al., 2007).

In complementation to the proteomic characterization we

mapped DNA methylation by reduced representation bisulfite

sequencing to depict the landscape of epigenetic regulation in

the aforementioned primary biopsies from Tasmanian devils.

Quantification of CpG methylation was performed by an unbi-

ased de novo approach (Klughammer et al., 2015). For the sub-

sequent analysis, due to the imperfect genome annotation of this

non-model organism, we focused on the identification of methyl-

ated CpGs in promoter regions. DNA methylation marks readily

distinguished tumor and healthy tissue and identified tumor-spe-

cific methylation signatures and their putative transcription fac-

tor binding sites (Figures S3A–S3J). Differential analysis of tumor

versus healthy biopsies highlighted 166 candidate genes with

different DNA methylation levels in their promoters (Figures 2D

and 2E; Table S6), which included the tumor-specific hypome-

thylated EGFL8 promoter as well as hypermethylated promoters

of ESR1, PTGIS, and GATA3 (Figure 2E). Comparative analysis

by gene set enrichment revealed a high concordance of RNA-

seq-derived transcript levels and proteomic data in the DFTD

cell line (Figure S3K) and was in line with an inverse correlation

pattern of methylated promoter regions and respective gene

transcript level (Figures S3L and S3M). An integrative network

analysis of the identified drug vulnerabilities, protein and methyl-

ation signatures revealed a high connectivity in the molecular

wiring of DFTD (Figure 2F; Table S6). This suggested a critical

involvement of central oncoprotein hubs consisting of STAT3,

TRIM28, and others, which may be triggered by ERBB kinase

action.

Molecular Dissection of ERBB-STAT3 Axis in DFTD
The proteomic tumor signatures revealed increased levels of

STAT3, which can become activated by ERBB receptor tyrosine

kinase signaling, as well as an enrichment of STAT3 target genes

(Figures 2C, S2E, and S2F; Table S5). Due to the central roles of

STAT3 in cancer and immunity (Villarino et al., 2017; Yu et al.,

2014) and the remarkably conserved amino acid sequences

of STAT3 between H. sapiens and S. harrisii (99.09%), we

investigated the levels of expression and activation of STAT3

by western blot. STAT3 is activated by phosphorylation of resi-

dues Y705 and S727. Thus, we tested antibodies specific to

these phosphorylated residues and found highly increased
lthy and tumor biopsies (hypermethylated in tumor [blue], hypomethylated in

, 166 tumor differentially methylated gene promoters, and ERBB2 and ERBB3

ith MetaCore based on protein-protein binding, transcriptional regulation, and

hile methylation candidates are represented with a black border. The ERBB2

wing direct connectivity, only nodes with ten or more connections in MetaCore

within the network. Modulation on tumor versus healthy proteomics differential

dulated) to red (up-modulated).

terquartile range from the boundaries, with the median in the center. See also
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Figure 3. Molecular Dissection of ERBB-

STAT3 Axis in DFTD

(A) Western blots of total STAT3, pS-STAT3, and

pY-STAT3 of four DFTD cell lines (T1–T4) and

fibroblasts (Fib.).

(B) Total protein phosphorylation immunoblots

from lysates of four DFTD cell lines (T1–T4) and

fibroblasts (Fib.) using a global anti-pY mono-

clonal antibody (4G10) in different input amounts.

(C)Western blots of total ERK1/2 and pT/Y-ERK1/2

of four DFTD cell lines (T1–T4) and fibroblasts (Fib.).

(D) Representative images of IHC for total STAT3,

pS-STAT3, pY-STAT3, and PRX in primary tumor

and peripheral nerve biopsy on serial consecutive

sections and quantification of total STAT3, pS-

STAT3, and pY-STAT3 in tumor biopsies, adjacent

tissue, and peripheral nerve tissue. Dotted rect-

angles indicate magnified areas. Scale bars, 200

and 25 mm.

(E) Five-point dose-response curve of cell lines to

the STAT3 inhibitor PG-S3-009 with DFTD and

fibroblast cell lines.

(F) Structure of DR-1-55.

(G) Five-point dose-response curve of cell lines to

the STAT3 inhibitor DR-1-55 with DFTD and

fibroblast cell lines.

(H) DFTD cells treated with 2 mMPG-S3-009, 4 mM

DR-1-55, or DMSO as control. Twenty-four hours

after treatment, expression of ERBB2 and ERBB3

was measured by real-time PCR (n = 3 replicates).

(I) Western blots of total STAT3, pS-STAT3, and

pY-STAT3 upon treatment with the ERBB in-

hibitors lapatinib (1 mM) and sapitinib (1 mM).

Statistical significance was calculated by

(D and H) unpaired t test. Graphs represent the

mean ± SEM. See also Figure S4.
STAT3 phosphorylation of both residues in DFTD tumor cells

compared with fibroblasts (Figure 3A, S4A, and S4B). Interest-

ingly, we also found a robust upregulation of protein tyrosine
130 Cancer Cell 35, 125–139, January 14, 2019
phosphorylation compared with fibro-

blasts (Figure 3B), indicating increased

tyrosine kinase signaling. ERBB family

members activate RAS-RAF-MAPK/

ERK, which in turn phosphorylates

STAT3 at S727 (Chung et al., 1997).

Indeed, we detected increased ERK1/2

phosphorylation in DFTD tumor cells (Fig-

ure 3C). STAT3 phosphorylation was

corroborated by immunohistochemical

stainings in primary tumor biopsies,

showing higher levels of STAT3 phos-

phorylation at residues S727 and Y705

compared with adjacent non-tumor tis-

sue or peripheral nerve tissue (Figure 3D).

Treatment with the covalent STAT3-se-

lective inhibitor PG-S3-009 (Garg et al.,

2017) resulted inDFTD tumor cell-specific

killing (Figure 3E) and reduced STAT3

phosphorylation of residue Y705 (Fig-

ure S4C). In addition, treatment with DR-

1-55, another selective STAT3 inhibitor
that covalently modifies a cysteine in the SH2 domain of STAT3

via a nucleophilic attack (Figures 3F, S4D, and S4E), reduced

the expression of the STAT3 target gene MMP2 (Figure S4F).



Figure 4. Blockade of ERBB Induces MHC Class I Gene Expression

(A) DFTD tumor cell line T1 was treated with recombinant interferon-g (rIFN-g) and/or 1 mM sapitinib. Control cells were treated with solvents. Forty-eight hours

after treatment, expression of B2M, SAHA-UC, STAT1, and STAT3 were measured by real-time PCR (n = 3 replicates).

(B) Reciprocal co-immunoprecipitation of STAT3 and STAT1 followed by western blots for STAT3 and STAT1 in DFTD tumor cell line (T1), fibroblasts, and human

HT29 colon cancer cells as control.

(legend continued on next page)
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We observed similar effects of DFTD tumor cell-specific killing

with both STAT3 inhibitors (Figure 3G). Further, pharmacological

inhibition of STAT3 by either PG-S3-009 or DR-1-55 led to

reduced expression of ERBB2 and ERBB3 (Figure 3H). In line

with this, DFTD tumor cells expressed higher levels of TRIM28

compared with fibroblasts (Figure S4G), and blockade of either

ERBB signaling or STAT3 led to reduced transcription of

TRIM28 (Figure S4H). We also found abolished expression of

the suppressor of cytokine signaling 1 (SOCS1) in DFTD tumor

cells (Figures S4I and S4J), a known inhibitor of STAT3 activation

(Song and Shuai, 1998). Intriguingly, treatment with ERBB inhib-

itors lapatinib and sapitinib inhibited serine and tyrosine phos-

phorylation of STAT3 (Figure 3I). In summary, our results suggest

that DFTD tumor cells exhibit an ERBB-dependent constitutive

activation of STAT3 in a positive feedforward loop.

Hyperactivated ERBB-STAT3 Reduces Expression of
MHC Class I-Related Genes
Transmissibility of DFTD has been linked to reduced expression

of MHC class I genes (Siddle and Kaufman, 2013), which promp-

ted us to assess a potential link between hyperactive ERBB-

STAT3 and MHC class I gene expression. To this end we stimu-

lated DFTD tumor cells with recombinant autologous interferon g

(rIFN-g). This induced the expression ofB2M and SAHA-UC, one

of Tasmanian devil’s MHC class I genes, as shown previously

(Figure 4A) (Siddle and Kaufman, 2013). Treatment with the

ERBB inhibitor sapitinib alone was insufficient to induce MHC

class I genes, which suggested an additional signaling require-

ment. Importantly, concomitant treatment of rIFN-g with sapiti-

nib amplified increased expression of B2M and SAHA-UC

(Figures 4A and 4B). In addition, we observed increased expres-

sion of STAT1 and a trend toward reduced STAT3 expression

upon treatment with rIFN-g and sapitinib (Figures 4A and S5A).

B2M and SAHA-UC are bona fide STAT1 target genes. Thus,

we hypothesized that high levels of STAT3 may interfere with

STAT1 transcriptional regulation. Indeed, reciprocal co-immuno-

precipitation confirmed physical interaction between STAT3 and

STAT1 (Figure 4B). This was corroborated by co-localization of

STAT3 and STAT1 in DFTD tumor cells (Figures S5B and S5C).

To test the effects of ERBB inhibition in vivo, we transplanted

DFTD tumor cells (T1) subcutaneously into the flanks of NOD/

SCID gamma (NSG) mice and, 21 days later when tumors were

palpable, started to administer 50 mg/kg sapitinib or vehicle

once daily. DFTD xenografts in the control group proliferated

rapidly after transplantation, while treatment with sapitinib effec-

tively stalled tumor growth (Figures 4C, 4D, and S6A). No drug

toxicity was observed as assessed by the serum concentration

of the liver transaminases alanine aminotransferase and aspar-

tate aminotransferase and the kidney parameter blood urea ni-

trogen (Figure S6B) and by histopathology (Figure S6C). The
(C and D) Tumor volume (C) and tumor weight (D) of DFTD tumor cell line T1 transp

daily (bilateral tumors, n = 5 mice per group). One out of two representative expe

(E) H&E and IHC analyses for total STAT3, pS-STAT3, pY-STAT3, Ki67, and Cleav

Dotted rectangles indicate magnified areas. Quantification of total STAT3, pS-ST

(F) Western blots for total STAT3, pY-STAT3, pS-STAT3, and STAT1 from repres

(G) Expression of B2M and STAT3 by real-time PCR from xenograft tumor tissue

Statistical significance was calculated by (A) one-way or (C) two-way ANOVA wi

mean ± SEM. See also Figures S5 and S6.
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observed anti-tumor effect of sapitinib was corroborated by his-

tological analysis of tumor tissue for total STAT3, pS-STAT3, and

pY-STAT3, as well as by staining for Ki67 and Cleaved Caspase

3 (Figure 4E). DFTD xenograft tumors from mice treated with sa-

pitinib showed reduced STAT3 serine and tyrosine phosphoryla-

tion and increased expression of B2M (Figures 4F and 4G).

Moreover, we also assessed the therapeutic effects of STAT3 in-

hibition by treating NSG mice 22 days after DFTD cell transplan-

tation with 10 mg/kg DR-1-55 each second day. Similar to sapi-

tinib, DR-1-55 resulted in reduced tumor growth (Figures 5A and

5B) without observed toxicity (Figures 5C and S6D). Treatment

with DR-1-55 resulted in pronounced reduction of pY STAT3

(Figures 5D and 5E) and reduced MMP2 expression (Figure 5D).

Further, DR-1-55 increased the expression of B2M, while STAT3

expression was decreased (Figure 5F). In contrast to our results

in vitro (Figure 4A), we noted that treatment of xenografted mice

with sapitinib or DR-1-55 alone was sufficient to increase B2M

(Figures 4G and 5F), possibly indicating additional host-derived

signals in vivo. Taken together, our results derived from cell cul-

ture and xenograft models provide strong evidence for a central

role of the ERBB-STAT3 axis in growth and immune evasion

of DFTD.

DISCUSSION

ERBB signaling is influenced by ligand-induced activation and

triggers downstream processes, such as context-dependent

activation of transcriptional regulators, including members of

the activator protein-1 family (AP-1, also bona fide STAT3 tar-

gets), ETS, and STAT3/5 transcription factors (Lemmon et al.,

2014; Schneider and Yarden, 2016). ERBB family genes are

frequently overexpressed, amplified or mutated in human solid

cancers and ERBB family members are targets of clinical thera-

pies (Appert-Collin et al., 2015; Bae and Schlessinger, 2010;

Roskoski, 2014; Yarden and Pines, 2012). In Schwann cells,

ERBB2/3 signaling regulates expansion and migration of pro-

genitor cells as well as different functions in myelination and

repair of axons (Corfas et al., 2004; Newbern and Birchmeier,

2010; Stassart et al., 2013). Moreover, we found increased

expression of proteins associated with epithelial to mesen-

chymal transition (EMT) process in DFTD tumors that are also

upregulated in Schwann cells upon nerve injury to support

axon regeneration (Chen et al., 2007; Ferguson and Muir,

2000; Weiss et al., 2016). This included the EMT-inducing zinc-

finger E-box-binding homeobox factor (ZEB2) (Comijn et al.,

2001) and the STAT3 target MMP2, which enhances the degra-

dation of extracellular matrix proteins and cancer cell invasion

(Nistico et al., 2012). The regenerative properties of Schwann

cells are highly linked to their plasticity whereby, upon nerve

injury, they reversibly de-differentiate, acquire high motility,
lanted into NSGmice and treated with either vehicle or 50mg/kg sapitinib once

riments is shown.

ed Caspase 3 of tumor tissues. Pictures shown are from contiguous sections.

AT3, pY-STAT3, Ki67, and Cleaved Caspase 3. Scale bars, 200 and 25 mm.

entative xenograft tumors.

.

th Bonferroni correction or (D, E, and G) unpaired t test. Graphs represent the



Figure 5. Xenograft Model with STAT3 Inhibitor DR-1-55

(A and B) Tumor volume (A) and tumor weight (B) of NSG mice transplanted with DFTD tumor cell line T1 and, 22 days after transplantation, treated with either

vehicle or 10 mg/kg DR-1-55 each day (bilateral tumors, n = 5 mice per group).

(legend continued on next page)

Cancer Cell 35, 125–139, January 14, 2019 133



and guide the growth of the damaged axons (Kim et al., 2013).

Thus, the identification of hyperactivated ERBB-STAT3 signaling

in DFTD may suggest aberrant regulation of the Schwann cell-

intrinsic repair program (Arthur-Farraj et al., 2017). Of note,

DFT2 tumors are pathologically similar but stain-negative for

the Schwann cell marker PRX (Pye et al., 2016) and display

copy-number gains for PDGFR (Stammnitz et al., 2018). It will

be interesting to investigate the involvement of similar driver

tyrosine kinase-STAT3 pathways blocking MHC class I.

A major enigmatic question of DFTD concerns the molecular

properties that are required for transmission between individuals

to explain the lack of rejection. Changes in MHC class I expres-

sion and diversity have been described in transmissible tumors

of devils and dogs (Belov, 2011). Of note, recent immunotherapy

trials with MHC-induced DFTD cells showed immunogenicity

in vivo (Tovar et al., 2017). Our data indicate that targeting of

the hyperactivated ERBB-STAT3 axis re-establishes the expres-

sion of MHC class I, thus facilitating MHC-mediated tumor im-

munosurveillance in Tasmanian devils (Figure 6). Promoters of

interferon-stimulated MHC class I-related genes are targets for

STAT1, while STAT3 is known to interfere with transcription by

sequestering STAT1 in the cytoplasm through heterodimeriza-

tion (Friedrich et al., 2017; Nivarthi et al., 2016; Stancato et al.,

1996). We hypothesize that the endogenous tonic interferon-

STAT-MHC class I axis in DFTD is disrupted due to high

STAT3 action promoting cancer cell proliferation, survival, and

invasion. Interestingly, STAT3 overexpression was previously

proposed as one of several candidate mechanisms of immune

evasion in transplantation and transmissible tumors (Fassati

and Mitchison, 2010). Next to the potential interference of

STAT3 with expression of MHC-I, there may also be a role for

TRIM28, which we found to be overexpressed in DFTD and

which acts as a negative regulator of interferon signaling (Liang

et al., 2011). Of note, reduced expression of MHC-I is expected

to impair rejection by CD8+ T cells only but not by natural killer

cells, which recognize cells in the absence of MHC-I. Natural

killer cells of Tasmanian devils, however, lack the ability to

directly recognize DFTD cells (Brown et al., 2011, 2016; Peel

and Belov, 2018), which is likely to contribute to the lack of rejec-

tion of horizontally transmitted tumor cells. Together, our find-

ings may bear relevance also for other transmissible cancers in

higher organisms including dogs, whose transmissible tumor

lacks B2M and shows low MHC class I surface expression (Co-

hen et al., 1984; Murgia et al., 2006).

We wish to acknowledge that molecular investigations of non-

model organisms can be notoriously hampered by imperfect

genome annotations, orthology inferences, and lack of reagents.

Several layers of controls were included in this integrative and

unbiased systems-biology approach. This was complemented

by comparative pathology for which we exploited the high de-

gree of conservation of key oncoproteins driving human cancer,
(C) Serum concentration of alanine aminotransferase, aspartate aminotransferas

(D) Tumor tissue immunohistochemically stained and quantified for total STAT3, pS

from contiguous sections. Dotted rectangles indicate magnified areas. Scale bar

(E) Western blots for total STAT3, pY-STAT3, pS-STAT3, and STAT1 from repres

(F) Expression of B2M and STAT3 by real-time PCR from xenograft tumor tissue

Statistical significance was calculated by (A) two-way ANOVA with Bonferroni cor

also Figure S6.
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cross-validating a similar driver oncogene scenario in Tasmanian

devils.

Our data indicate a positive feedback loop between ERBB re-

ceptor tyrosine kinases and STAT3. The underlying mechanism

of maintained STAT3 activation, the role of specific STAT3-acti-

vating kinases and the apparent lack of negative regulation

requires further investigation. Notably, STAT3 S727 phosphory-

lation is often constitutive in cancer cells associated with hyper-

active RAS-RAF signaling, and modulates ATP production in

mitochondria through the respiratory chain (Gough et al., 2009;

Wegrzyn et al., 2009). Serine phosphorylation of STAT3 can be

catalyzed by many kinases including p38 MAPK, ERK, JNK,

CDKs, mTOR, or PKC in response to growth factors such as

EGF, PDGF, or Insulin (Chung et al., 1997). Sapitinib efficiently

blocked S727 phosphorylation of STAT3 in DFTD cells, while

STAT3 inhibition tended to show stronger effects on phosphory-

lation at residue Y705. Thus, an inhibition of growth factor

signaling through sapitinib combinedwith STAT3 inhibition could

be beneficial to synergistically block survival, proliferation, and

metabolic functions of STAT3. Not mutually exclusively, the

involved processes may include recently detected copy gains

of ERBB3 (Hayes et al., 2017; Taylor et al., 2017) leading to

enhanced ERBB2-ERBB3 heterodimer activity, the secretion of

ligands of the ERBB family, and/or blunted negative regulation

by phosphatases or the SOCS pathway.

Histopathologically, DFTD presents as undifferentiated pleo-

morphic tumor cellswith fibrous stroma and occasional infiltrating

immune cells (Howson et al., 2014; Loh et al., 2006a, 2006b). It is,

thus, conceivable that the complex underlying interactions within

the tumor microenvironment may contribute to the activation of

the ERBB-STAT3 axis. The integrated and unbiased systems-

level analysis presentedhere is expected toprovideacritical foun-

dation for further investigations and raises general questions

about the tumor biology and transmissibility of such cancers in

other species. The implicated canonical cancer signatures appar-

entlydonot suffice togive rise to transmissible cancers inhumans.

Thus, it should be emphasized that the occurrence of transmis-

sible cancers in mammalians is likely to depend on a complex

combination of molecular as well as non-molecular context-

dependent features, such as aggressive behavior, tissue wound-

ing, and population dynamics (Epstein et al., 2016).

Blocking the ERBB-STAT3 axis may present a promising drug

target whose interference arrests cancer cells and at the same

time leads to increased tumor surveillance through re-expres-

sion of MHC class I (Garrido et al., 2016). While pharmacological

treatments come with inherent logistic limitations for wildlife dis-

eases, this rationalized therapeutic strategy––possibly in combi-

nation with a vaccine against DFTD and/or immunotherapeutic

interventions––offers a much-needed expansion of the so

far limited measures to preserve the Tasmanian devil from

extinction.
e, and blood urea nitrogen.

-STAT3, pY-STAT3, Ki67, CleavedCaspase 3, andMMP2. Pictures shown are

s, 200 and 25 mm.

entative xenograft tumors.

.

rection or (B–D and F) unpaired t test. Graphs represent the mean ± SEM. See



Figure 6. Working Model for the Impact of the ERBB-STAT3 Axis in DFTD

(A) Aggressive social interactions in the highly inbred population of Tasmanian devils enabled the rapid spread of DFTDwith fatal consequences. The hyperactive

ERBB-STAT3 axis induces the expression of downstream metastasis-related genes (i.e., MMP2) while suppressing the expression of MHC class I genes

(i.e., B2M). We hypothesize that highly abundant phosphorylated STAT3 protein traps unphosphorylated STAT1 proteins in heterodimers, thereby preventing the

transcriptional regulation of STAT1 downstream target genes such as B2M. This may contribute to immune evasion and the known lack of tumor rejection upon

horizontal transmission.

(B) Interference with the ERBB-STAT3 axis by using either ERBB inhibitors or STAT3 inhibitors results in killing of DFTD tumor cells.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-HSC70 monoclonal mouse Santa Cruz Cat#sc-7298

anti-EGFR monoclonal mouse Santa Cruz Cat#sc-373746

anti-EGFR monoclonal mouse BD Biosciences Cat#610016

anti-phospho-EGFR (Y1068) monoclonal rabbit Cell Signaling Technology Cat#3777

anti-HER/ErbB2 monoclonal mouse Santa Cruz Cat#sc-7301

anti-HER2/ErbB2 monoclonal rabbit Cell Signaling Technology Cat#4290

anti-phospho-HER2/ErbB2 (Y1221/1222) monoclonal rabbit Cell Signaling Technology Cat#2243

anti-HER3/ErbB3 monoclonal rabbit Cell Signaling Technology Cat#12708

anti-phospho-HER3/ErbB3 (Y1289) monoclonal rabbit Cell Signaling Technology Cat#2842

anti-Periaxin/PRX Sigma Aldrich Cat#HPA001868

anti-STAT3 monoclonal mouse BD Biosciences Cat#610189

anti-STAT3 monoclonal mouse Cell Signaling Technology Cat#9139

anti-phospho-STAT3 (Y705) polyclonal rabbit Cell Signaling Technology Cat#9131

anti-phospho-STAT3 (Y705) polyclonal rabbit Cell Signaling Technology Cat#9134

anti-pY (4G10) Merck Millipore Cat#05-321

anti-ERK1/2 monoclonal rabbit Cell Signaling Technology Cat#4695

anti-phospho-ERK1/2 (T202/Y204) monoclonal rabbit Cell Signaling Technology Cat#4370

anti-STAT1 Cell Signaling Technology Cat#9172

anti-Kap-1/TRIM28 rabbit polyclonal Merck Millipore Cat#ABE1859

anti-EGFL8 rabbit polyclonal Abcam Cat#ab58650

anti-SOCS1 Cell Signaling Technology Cat#3950

anti-B2M Siddle et al., 2013 N/A

anti-phospho-STAT1 (Y701) (58D6) monoclonal rabbit Cell Signaling Technology Cat#9167

Ki67 (NCL-Ki67p) Leica Biosystems Cat#KI67-MM1-L-CE

Cleaved Caspase 3 (Asp175) Cell Signaling Technology Cat#9661S

ECL anti rabbit IgG (NA934V) GE Healthcare Cat#NA934

anti-mouse (NA931) HRP GE Healthcare Cat#NA931

anti-MMP2 polyclonal rabbit Abcam Cat#ab37150

Biological Samples

Devil facial tumor disease 1 (DFT1) biopsy: 08/0038,

Mid Tumour T1

This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/0195,

Mid Tumour T2

This paper N/A

Tasmanian devil spleen biopsy: 08/0195, Spleen This paper N/A

Tasmanian devil skin biopsy: 08/0195, Skin This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/0289,

Early Tumour T2

This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/0289,

Mid Tumour T1

This paper N/A

Tasmanian devil spleen biopsy: 08/0289, Spleen This paper N/A

Tasmanian devil skin biopsy: 08/0289, Skin This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/0590,

Mid Tumour T2

This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/0590,

Late Tumour T1

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Tasmanian devil spleen biopsy: 08/0590, Spleen This paper N/A

Tasmanian devil skin biopsy: 08/0590, Skin This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/1818,

Early Tumour T3

This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/1818,

Mid Tumour T2

This paper N/A

Devil facial tumor disease 1 (DFT1) biopsy: 08/1818,

Late Tumour T1

This paper N/A

Tasmanian devil spleen biopsy: 08/1818, Spleen This paper N/A

Tasmanian devil skin biopsy: 08/1818, Skin This paper N/A

Tasmanian devil nerve biopsy: Christine This paper N/A

Tasmanian devil nerve biopsy: Curley Shirley This paper N/A

Chemicals, Peptides, and Recombinant Proteins

Recombinant devil interferon gamma (rIFNg) Siddle et al., 2013 N/A

Kinase Inhibitor Drug Library TargetMol and Cayman

Chemical

Cat# L1600 and Cat# 10505 respectively

2K Drug Library Sdelci et al., 2016 N/A

Sapitinib Adooq Bioscience Cat#A10116

Lapatinib Adooq Bioscience Cat#A10514

PG-S3-009 Garg et al., 2017 N/A

DR-1-55 This paper N/A

Deposited Data

Proteomic Data This paper PRoteomics IDEentification database

accession number 1-20180126-165173

DNA Methylation Data This paper Gene Expression Omnibus database

accession number GSE108160

RNA Seq Data This paper Gene Expression Omnibus database

accession number GSE108107

Experimental Models: Cell Lines

Devil facial tumor disease 1 (DFT1) cell line: 06/2887, Strain 1 Deakin et al., 2012 N/A

Devil facial tumor disease 1 (DFT1) cell line: 05/2569, Strain 2 Deakin et al., 2012 N/A

Devil facial tumor disease 1 (DFT1) cell line: 06/0368, Strain 3 This paper N/A

Devil facial tumor disease 1 (DFT1) cell line: 07/0192, Strain 4 Ingles and Deakin, 2015 N/A

Tasmanian devil fibroblast cell line Murchison et al., 2012 N/A

Experimental Models: Organisms/Strains

NOD scid gamma (NSG) mice The Jackson Laboratory Cat#005557

Oligonucleotides

RPL13A forward: 5’-CCCCACAAGACCAAGCGAGGC-3’ Siddle et al., 2013 N/A

RPL13A reverse: 5’-ACAGCCTGGTATTTCCAGCCAACC-3’ Siddle et al., 2013 N/A

EGFR forward: 5’-GCAGATAGCCAAGGGTATGAGTTACC-3’ This paper N/A

EGFR reverse: 5’-TTTTGCCAGCCCAAAATCTGT-3’ This paper N/A

ERBB2 forward: 5’-GGAACCCAAGTGTGCACAGG-3’ This paper N/A

ERBB2 reverse: 5’-TGGCATCAGCAGGCAGGTA-3’ This paper N/A

ERBB3 forward: 5’-TACATGGTCATGGTTAAGTGCTGG-3’ This paper N/A

ERBB3 reverse: 5’-GGTGGATCTCGGGCCATT-3’ This paper N/A

MHC-1 (SAHA-UC; KY194695) forward: 5’-CCGTGGGC

TACGTGGACGATCAGC-3’

Siddle et al., 2013 N/A

MHC-1 (SAHA-UC; KY194695) reverse: 5’-GTCGTAGG

CGAACTGAAG-3’

Siddle et al., 2013 N/A

B2M forward: 5’-TGTGCATCCTTCCCTACCTGGAGG-3’ Siddle et al., 2013 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

B2M reverse: 5’-CATTGTTGAAAGACAGATCGGACCGC-3’ Siddle et al., 2013 N/A

STAT1 forward: 5’-GGAAAAGCAAGACTGGGACTATGC-3’ This paper N/A

STAT1 reverse: 5’-GCGGCTATAGTGCTCATCCAA-3’ This paper N/A

STAT3 forward: 5’-GGAAGCTGACCCAGGTAGTGC-3’ This paper N/A

STAT3 reverse: 5’-CGGCAGGTCAATGGTATTGC-3’ This paper N/A

TRIM28 forward: 5’-AAGTGCGCACCTCCATCC-3’ This paper N/A

TRIM28 reverse: 5’-CCCGCTTGTTGAGCTCCTT-3’ This paper N/A

EGF forward: 5’-TATGACTGGTACCGGCCCTG-3’ This paper N/A

EGF reverse: 5’-TGCCAGCATTAGCTACCACTTGT-3’ This paper N/A

NRG1 forward: 5’-CAGATACTCGTGCAAGTGCCC-3’ This paper N/A

NRG1 reverse: 5’-TGCAGATGCCAGTGATGGTC-3’ This paper N/A

EGFL8 forward: 5’-TCCATACAGCAAGGGAGTTTGC-3’ This paper N/A

EGFL8 reverse: 5’-ATCCGCTGACCTGCACACA-3’ This paper N/A

HBEGF forward: 5’-GGCTGCTCATGTTCAGGTACC-3’ This paper N/A

HBEGF reverse: 5’-TTTCCATCAGTGGGCAATAGG-3’ This paper N/A

MMP2 forward: 50-CAGACAAAGAGTTGGCTGTACAATACC-30 This paper N/A

MMP2 reverse: 50-CCTTCAGCACAAACAGGTTGC-30 This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andreas

Bergthaler (abergthaler@cemm.oeaw.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Tissue Biopsies
DFTD cells were grown from primary cell cultures derived from fine needle aspirates that have been collected from the wild (see

Table S1) (Deakin et al., 2012; Ingles and Deakin, 2015; Murchison et al., 2012). Devil Facial Tumor cell lines T1-4 were grown in

RPMI (Gibco 21875-034) supplemented with 10% Fetal bovine serum (PAA A15-101), 1% Pen Strep Glutamine (Gibco 10378-

016) and 50 mM 2-Mercaptoethanol (Sigma M-3148). Fibroblasts were grown in Advanced DMEM (Gibco 12491-015) supplemented

with 10% Fetal bovine serum (PAA A15-101), 1% Pen Strep Glutamine (Gibco 10378-016). Cells were grown at 35�C in 5% CO2 and

lifted with either PBS containing 1mMEDTA or 0.05% Trypsin-EDTA (Gibco 25300-054). CHO supernatants containing recombinant

devil interferon gamma (rIFNg) was used 1:3 diluted (Siddle et al., 2013). Control cells received supernatants of wild type CHO cells.

The ERBB inhibitors sapitinib (Adooq Bioscience, Cat# A10116) and lapatinib (Adooq Bioscience, Cat# A10514) were dissolved in

DMSO and used at the indicated concentrations. The STAT3 inhibitors PG-S3-009 and DR-1-55 were dissolved in DMSO and

used at the indicated concentrations.

Primary biopsies from Tasmanian devils were obtained from the Department of Primary Industries, Parks, Water and Environment

(DPIPWE) (Tasmanian Government, Australia). All animal procedures were performed under a Standard Operating Procedure

approved by the Secretary, Wildlife Management Branch, Tasmanian Government Department of Primary Industries, Parks, Water

and the Environment (DPIPWE), in agreement with the DPIPWE Animal Ethics Committee. Biopsies were received frozen on dry ice

and stored in liquid nitrogen until processed or embedded in paraffin blocks (Table S1).

Mouse Xenograft Studies
NOD scid gamma (NSG) mice (JAX # 005557) were maintained under pathogen-free conditions at the University of Veterinary Med-

icine, Vienna. Mice were at the age of 8-14 weeks at the time of cell implantation. Mice were kept at 12 hr/12 hr light cycle and

received standard food and water ad libidum. All animal experiments were approved by the institutional ethics and animal welfare

committee of the University of Veterinary Medicine, Vienna and the national authority according to xx 26ff. of Animal Experiments

Act, TVG 2012 BMWFW-68.205/0130-WF/V/3b/2016. The experimental design and number of mice assigned to each treatment

arm were based on prior experience with similar models and provided sufficient statistical power to discern significant differences.

For sapitinib treatment mice were matched according to initial tumor size and randomized to treatment with sapitinib or vehicle

(ddH2O + 1% Tween80). No mice were excluded from the analysis. Mice were implanted subcutaneously in both flanks with

1x106 Devil Facial Tumor cell line 1 (Table S1) in 100 ml PBS, using a 27G needle. Tumor growth was measured every second day

using Vernier calipers for the duration of the experiment and tumor volumes were calculated with the following formula: tumor
e3 Cancer Cell 35, 125–139.e1–e9, January 14, 2019

mailto:abergthaler@cemm.oeaw.ac.at


volume = (length 3 width2)/2. Treatment was initiated when the average tumor volume reached approximately 3 mm3 and experi-

ments were terminated once tumor volume in control group reached 1 cm3. 1 out of 10 transplanted tumors did not grow in each

group of mice (n=5). Tumors were resected and used for analysis of tumor weight, immunohistochemistry, real-time PCR and immu-

noblotting as described.

In the case of DR-1-55 treatment, the mice were randomly divided into two groups and, once the tumor volume reached approx-

imately 3mm3, themicewere treated each second daywith DR-1-55 (10mg/kg) or vehicle (1%DMSO, 5%Tween80, 50%PEG400 in

PBS) until tumors in control group reached approximately 1 cm3.

METHODS DETAILS

Drug Viability Screen
We used a combined library of selected 1847 drugs (Sdelci et al., 2016) and 684 kinase inhibitors (Targetmol catalog no. L1600 and

CaymanChemical item no 10505), whichwere transferred onto 384-well plates using an acoustic liquid handler (Echo, Labcyte). 5000

cells per well of DFTD cell lines T1-4, and 2500 cells per well of fibroblasts were added on top of the drugs (50 nl in DMSO) with a

dispenser (Thermo Fisher Scientific) to a total of 50 ml/well and incubated at 37�C. Cell viability was measured after 72 hr using

the CellTiter-Glo� Luminescent Cell Viability Assay (Promega G7573) in a multilabel plate reader (EnVision, PerkinElmer). Initially,

all drugs were tested on DFTD cell line #1 at a single dose (typically 10 mM). 434 drug hits with effects on cell viability were subse-

quently tested in a 4-dose response in triplicate wells of DFTD cell lines 1 to 4 as well as fibroblasts. Drug candidates were selected

based on the difference between the Area Under the Curve (AUC) of each tumor cell line to the control fibroblast higher than 50. The

addition of 2 standard deviations of the mean AUC of each strain should also result in a lower value than the subtraction of two stan-

dard deviations from the fibroblast AUC (Equation 1). This yielded 69 candidates that killed at least one DFTD cell line. Out of those, 41

drug candidates killed at least three out of four tumor cell lines but not fibroblasts. These 41 drugs were re-tested as 8-point dose-

response in triplicates on the aforementioned five cell lines and cell viability was assessed by CellTiter-Glo as described previously.

The STAT3 inhibitors PG-S3-009 (Garg et al., 2017) and DR-1-55 were tested separately as 5-point dose-response curves in tripli-

cates. The percentage of control (POC) was calculated by using linear regression for each plate individually, setting themean signal of

the negative control wells (DMSO) to 100% and the mean signal of the positive control wells to 0%.

AUCfibroblast � 2SdðAUCfibroblastÞ> AUCtumor strains � 2SdðAUCtumor strainsÞ (Equation 1)

Equation 1: Equation identifying significant drugs killing the DFTD tumor strains compared to the fibroblast. AUC stands for area

under the curve. Sd stands for standard deviation.

DNA and RNA Isolation
For DNA methylation analysis, approximately 20 mg of primary Tasmanian devil tissue was isolated and homogenised using the Tis-

sue Lyser II (Qiagen, Hilden, Germany, 12 x 30 sec, 30 Hz). DNA and RNA were isolated using the AllPrep DNA/RNAMini Kit (Qiagen,

80204), according to the manufacturer’s instructions. For expression analysis from cell lines, total RNA was isolated from approxi-

mately 1x106 cells using QIAzol lysis reagent according to the manufacturer’s instructions (Qiagen).

Real-Time PCR
Isolated RNA was reverse transcribed into cDNA using the First Strand cDNA Synthesis Kit (Fermentas) according to the manufac-

turer’s instructions. Subsequent gene expression was then analysed using SYBR Select Master Mix (Applied Biosystems; 4472908).

We designed and used the following gene-specific primers: 5’- CCCCACAAGACCAAGCGAGGC -3’ and 5’- ACAGCCTGGTATTTC

CAGCCAACC -3’ for RPL13A (Siddle et al., 2013), 5’- GCAGATAGCCAAGGGTATGAGTTACC-3’ and 5’- TTTTGCCAGCCCA

AAATCTGT-3’ forEGFR, 5’- GGAACCCAAGTGTGCACAGG-3’ and 5’- TGGCATCAGCAGGCAGGTA-3’ for ERBB2, and 5’- TACATG

GTCATGGTTAAGTGCTGG-3’ and 5’- GGTGGATCTCGGGCCATT-3’ for ERBB3, 5’- CCGTGGGCTACGTGGACGATCAGC -3’ and

5’- GTCGTAGGCGAACTGAAG -3’ forMHC-1 (SAHA-UC; KY194695) (Siddle et al., 2013), 5’-TGTGCATCCTTCCCTACCTGGAGG -3’

and 5’-CATTGTTGAAAGACAGATCGGACCGC -3’ for B2M (Siddle et al., 2013), 5’- GGAAAAGCAAGACTGGGACTATGC -3’ and

5’- GCGGCTATAGTGCTCATCCAA -3’ for STAT1, 5’- GGAAGCTGACCCAGGTAGTGC -3’ and 5’- CGGCAGGTCAATGGTATTGC -3’

for STAT3, 5’-AAGTGCGCACCTCCATCC-3’ and 5’-CCCGCTTGTTGAGCTCCTT-3’ for TRIM28, 50-TATGACTGGTACCGGCC

CTG-30 and 50-TGCCAGCATTAGCTACCACTTGT-30for EGF, 50-CAGATACTCGTGCAAGTGCCC-30 and 50-TGCAGATGCCAGT

GATGGTC-30for NRG1, 50-TCCATACAGCAAGGGAGTTTGC-30 and 50-ATCCGCTGACCTGCACACA-30for EGFL8, 50-GGCTGCTC

ATGTTCAGGTACC-30 and 50-TTTCCATCAGTGGGCAATAGG-30 for HBEGF, 50-CAGACAAAGAGTTGGCTGTACAATACC-30 and
50-CCTTCAGCACAAACAGGTTGC-30 for MMP2. Designed forward primers span exon-exon junctions where possible.

Western Blotting
Approximately 5x106 cells fromDFTD strains 1-4 and 2.5x106 Tasmanian devil fibroblasts were pelleted (260 g, 5 min, 4�C; Table S1),
washed three times in cold PBS, snap frozen in liquid nitrogen and frozen at -80�C until processed. Sample preparation andWestern

blotting was performed using standard techniques. Nitrocellulose membranes (0.45 mm Amersham Protran 10600002, GE Health-

care, Buckinghamshire, UK) were incubated with the following antibodies in the dilution as indicated (see also Table S1): specific
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anti-phospho-STAT3 (Y705) polyclonal rabbit (1:1000; 9131; Cell Signaling Technology, Cambridge, UK), anti-STAT3 monoclonal

mouse (1:1000; 610189; BD Biosciences, Franklin Lakes, NJ, USA) or (9139; Cell Signaling; 1:1000), anti-phospho-STAT3 (S727)

polyclonal rabbit (1:1000; 9134; Cell Signaling Technology, Cambridge, UK), anti-STAT1 (rabbit; 9172; Cell Signaling; 1:1000),

anti-phospho-STAT1 (Y701) monoclonal rabbit (1:1000; 9167; Cell Signaling Technology), anti-EGFL8 polyclonal rabbit (1:1000;

ab58650; Abcam, Cambridge, UK), anti-phospho-EGFR (Y1068) monoclonal rabbit (1:1000; 3777; Cell Signaling Technology),

anti-EGFR monoclonal rabbit (1:1000; sc-373746; Santa Cruz, Dallas, TX, USA), anti-phospho-HER2/ERBB2 (Y1221/1222) mono-

clonal rabbit (1:1000; 2243; Cell Signaling Technology), anti-ERBB2 monoclonal mouse (1:1000, sc-7301; Santa Cruz Biotech-

nology), anti-phospho-HER3/ERBB3 (Y1289) monoclonal rabbit (1:1000; 2842; Cell Signaling Technology), anti-HER3/ERBB3

monoclonal rabbit (1:1000; 12708; Cell Signaling Technology), anti-HSC70 monoclonal mouse (1:1000; sc-7298; Santa Cruz),

anti-TRIM28 polyclonal rabbit (1:1000; ABE1859; Millipore); anti-ERK1/2 monoclonal rabbit (1:1000; 4695; Cell Signaling Technol-

ogy, Cambridge, UK), anti-phospho-ERK1/2 (T202/Y204) monoclonal rabbit (1:1000; 4370; Cell Signaling Technology, Cambridge,

UK), anti-pY (4G10; Merck Millipore; 1:1000), anti-SOCS (1:1000; 3950; Cell Signaling Technology, Cambridge, UK), anti-B2M

(1:1000; (Siddle et al., 2013)), ECL anti-rabbit IgG (NA934V) or anti-mouse (NA931) HRP (1:10000; GE Healthcare,

Buckinghamshire, UK).

Immunoprecipitation
Cells were lysed in HE buffer (10 mM HEPES (pH 7.35), 1 mM EDTA) supplemented with protease inhibitors using a dounce tissue

grinder. Human HT-29 cells (ATCC HTB-38) served as control. For immunoprecipitation, 1 mg protein lysate was incubated with 2 mg

of anti-STAT3 (9139; Cell Signaling) or anti-STAT1 (9172; Cell Signaling) at 4�C overnight and immunoprecipitated with 25 ml Dyna-

beads Protein G (10004D; Thermo Fisher Scientific, Waltham, MA, USA) for 2 hr at 4�C. Beads were washed 3x with HE buffer and

samples were eluated in 40 ml Laemmli buffer at 95�C for 10 min.

Histology
DFTD tissues of diseased animals (328T1 and 463T1) were fixed in 10%neutral buffered formalin and paraffin-embedded. 2 mmFFPE

consecutive tumor sections were stained with Hematoxylin (Merck, Darmstadt, Germany) and Eosin G (Carl Roth). For immunohis-

tochemical stainings, heat-mediated antigen retrieval was performed in citrate buffer at pH 6.0 (S1699; Dako, Agilent, Santa Clara,

CA, USA), EDTA at pH 8.0 or TE at pH 9.0. Sections were stained with antibodies specific to STAT3 (1:200; pH 6; 9139; Cell Signaling

Technology), phospho-STAT3 (S727) monoclonal rabbit (1:80; pH 9; 9134; Cell Signaling Technology); EGFR monoclonal mouse

(1:300; 610016; pH 9; BD Biosciences), HER2/ERBB2 monoclonal rabbit (1:200, 4290; Cell Signaling Technology), HER3/ERBB3

monoclonal rabbit (1:200, 12708; Cell Signaling Technology), Periaxin/PRX (1:200, HPA001868, Sigma Aldrich), MMP2 (1:200;

ab37150, Abcam), Ki67 (1:1000; NCL-Ki67p; Novocastra, Leica Biosystems;) or Cleaved Caspase 3 (Asp175) (1:200, 9661S, Cell

Signaling Technology) using standard protocols (see also Table S1). Images were photographed using an Olympus BX 53 micro-

scope, and were quantified using HistoQuest TM software (TissueGnostics GesmbH, Vienna, Austria).

Immunofluorescence
Cells were grown on sterile glass coverslips, rinsedwith PBS, fixed in 4%paraformaldehyde for 10min and permeabilized using 0.5%

Triton X-100 in PBS for 8 min. Cells were blocked in 3% BSA+0.1% Triton in PBS for 1 hr, incubated with primary antibodies

(anti-STAT1 1:500, 9172 Cell Signaling Technology; anti-STAT3 1:1500, 9139 Cell Signaling Technology) for 1 hr or at 4�C overnight,

washed and probed with the secondary antibodies conjugated to Alexa Fluor 488 and Alexa Fluor 568 (Molecular Probes) for 1 hr.

Cells were stainedwith DAPI andmounted in VECTASHIELDAntifadeMountingMediumwith DAPI (Vector Laboratories). The images

were acquired with a Zeiss LSM 880 Confocal Laser Scanning Microscope.

Mass-Spectrometry Based Proteomics
Sample Preparation for MS

Approximately 1x107 cells from DFT1 tumor cell line T1 were pelleted (260g, 5 min, 4�C), washed three times in PBS and frozen

at -80�C until processed. Primary biopsies were thawed and placed in a petri dish. Using a scalpel blade, 535 to 538 mm pieces

of tissue were excised from the solid mass and placed in a 2 ml Eppendorf tube. Depending on the size of the piece of tissue, 500-

1000 ml of lysis buffer (50 mM HEPES, pH 8.0, 2% SDS, 1 mM PMSF, and protease inhibitor cocktail (Sigma-Aldrich)) was added

to the tumour and skin samples. Samples were homogenised using the Tissue Lyser II (Qiagen, Hilden, Germany) for 432 min,

30 Hz. For some samples, it was necessary to repeat the homogenization procedure. Spleen samples were pre-cleared of blood

before tissue lysis. Tissue pieces were placed in a 2 ml Eppendorf tube containing 1 ml red blood cell (RBC)-lysis buffer

(eBioscience, San Diego, USA). Spleen tissue was homogenised using the Tissue Lyser II (Qiagen, Hilden, Germany) for

3330s, centrifuged at 20000 g for 10 min and supernatant containing the lysed red blood cells removed. Lysis was performed

at room temperature (RT) for 20 min. Lysed samples were heated at 99�C for 5 min and then cooled to RT. The cell lysate

was sonicated using a Covaris S2 high performance ultrasonicator (Covaris Inc., Brighton, UK). The lysate was centrifuged at

20000 g for 15 min at 20�C, and the protein extract was collected from the supernatant. Total protein content of the whole tissue

lysates was determined using the BCA protein assay kit (Pierce Biotechnology, Rockford, IL) following the recommendations of the

manufacturer. The assay was performed in a 96-well plate using 10 ml of each lysate and standard protein. The samples were

measured in triplicates. Bovine serum albumin (BSA) (Pierce Biotechnology, Rockford, IL) was used as the standard protein.
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Filter-Aided Sample Preparation (FASP)

100 mg total protein per tissue was used for FASP digestion. Dithiothreitol (DTT; SIGMA-Aldrich Chemie, Vienna, Austria) was added

to sample to a final concentration of approx. 83mM. After incubation of the samples at 99�C for 5min, FASP digestion was performed

using a 30 kDamolecular weight cut-off filter (Microcon-30, Ultracel YM-30, Merck-Millipore Co., Cork, IRL) (Wisniewski et al., 2009).

Briefly, 200 mL 8M urea in 100mMTris-HCl (pH 8.5) (UA) was added to the samples. If the volume exceeded 50 ml, then 400 ml UAwas

added. After equilibration of the filter units with 200 ml UA and centrifugation at 140003g for 15min, the lysed samples were applied in

steps of 250 ml to the filter unit and centrifuged at 14000 g for 15 min at 20�C to remove SDS. Any remaining SDS was exchanged by

urea in a second washing step with 200 ml UA. The proteins were alkylated with 100 ml 50 mM iodoacetamide (Sigma-Aldrich Chemie,

Vienna, Austria) for 30min at RT. Afterwards, three washing stepswith 100 mL UA solution were performed, followed by threewashing

steps with 100 mL 50 mM TEAB buffer (Sigma-Aldrich, Vienna, Austria). Proteins were digested with Trypsin overnight at 37�C. Pep-
tides were recovered using 40 ml 50 mM TEAB buffer followed by 50 ml of 0.5 M NaCl (Sigma-Aldrich, Vienna, Austria).

Two-dimensional liquid chromatography was performed by reverse-phase chromatography at high and low pH. FASP digests

were purified by solid-phase extraction (SPE) (MacroSpin Columns, 30-300 mg capacity, Nest Group Inc. Southboro, MA, USA)

and reconstituted in 23 ml 5% acetonitrile, 10 mM ammonium formate. Peptides were separated on a Gemini-NX C18 (150 3

2 mm, 3 mm, 110 Å, Phenomenex, Torrance, US) using a 30 min gradient from 5 to 90% acetonitrile containing 10 mM ammonium

formate buffer, pH 10, at a flow rate of 100 ml/min, using an Agilent 1200HPLC system (Agilent Biotechnologies, Palo Alto, CA). Details

of the methodology are as described previously (Bennett et al., 2011). Ten time-based fractions were collected. Samples were acid-

ified by the addition of 5ml 5% formic acid. Solvent was removed in a vacuum concentrator, and samples were reconstituted in 5%

formic acid. Liquid chromatographymass spectrometry was performed on a hybrid linear trap quadrupole (LTQ) Orbitrap Velosmass

spectrometer (ThermoFisher Scientific, Waltham, MA) using the Xcalibur version 2.1.0 coupled to an Agilent 1200 HPLC nanoflow

system (dual pump system with one trap-column and one analytical column) via a nanoelectrospray ion source using liquid junction

(Proxeon, Odense, Denmark). Solvents for HPLC separation of peptides were as follows: solvent A consisted of 0.4% formic acid (FA)

in water, and solvent B consisted of 0.4% FA in 70%methanol and 20% 2-propanol. From a thermostattedmicroautosampler, 8 ml of

the tryptic peptide mixture were automatically loaded onto a trap column (Zorbax 300SB-C18 5 mm, 530.3 mm, Agilent Biotechnol-

ogies) with a binary pump at a flow rate of 45 ml/min. 0.1% trifluoroacetic acid (TFA) was used for loading andwashing the precolumn.

After washing, the peptides were eluted by back-flushing onto a 16 cm fused silica analytical column with an inner diameter of 50 mm

packed with C18 reversed phase material (ReproSil-Pur120 C18-AQ, 3 mm, Dr. Maisch GmbH, Ammerbuch-Entringen, Germany).

The peptides were eluted from the analytical column with a 27 min gradient ranging from 3% to 30% solvent B, followed by a

25 min gradient from 30% to 70% solvent B, and finally a 7 min gradient from 70% to 100% solvent B at a constant flow rate of

100 nl/min (Bennett et al., 2011). The analyses were performed in a data-dependent acquisition mode, and dynamic exclusion for

selected ions was 60s. A top 15 collision-induced dissociation (CID) method was used, and a single lock mass at m/z 445.120024

(Si(CH3)2O)6) was employed (Olsen et al., 2005). Maximal ion accumulation time allowed in CID mode was 50 ms for MSn in the

LTQ and 500 ms in the C-trap. Automatic gain control (AGC) was used to prevent overfilling of the ion traps and was set to 5000

in MS2 mode for the LTQ and 106 ions for a full MS1 FTMS scan. Intact peptides were detected in the Orbitrap Velos at a resolution

of 60000 resolution (at m/z 400). The threshold for switching from MS1 to MS2 was 2000 counts.

DNA Methylation Analysis
DNA methylation profiling by RRBS was performed as described previously using 100 ng of genomic DNA isolated from RNA-later

preserved tissue samples through the Allprep DNA/RNA Mini kit (QIAGEN) (Klughammer et al., 2015). Methylated and unmethylated

spike-in controls were added in a concentration of 0.1% to assess bisulfite conversion efficiency independent of CpG context. DNA

was digested using the restriction enzymesMspI and TaqI in combination (as opposed to onlyMspI in the original protocol) in order to

increase genome-wide coverage. Restriction enzyme digestion was followed by fragment end repair, A-tailing, and adapter ligation.

The amount of effective library was determined by qPCR, and samples were multiplexed in pools of 13 with similar qPCR Ct values.

The pools were then subjected to bisulfite conversion followed by library enrichment by PCR. Enrichment cycles were determined

using qPCR and ranged from 9 to 13 (median: 11). After confirming adequate fragment size distributions on Bioanalyzer High Sensi-

tivity DNA chips (Agilent), libraries were sequenced on Illumina HiSeq 3000/4000 machines in a 50 bp single-read setup.

Transcriptome Expression Analysis and Variant Calling
The amount of total RNA was quantified using Qubit 2.0 Fluorometric Quantitation system (Life Technologies) and the RNA integrity

number (RIN) was determined using Experion Automated Electrophoresis System (Bio-Rad). RNA-seq libraries were prepared with

TruSeq StrandedmRNA LT sample preparation kit (Illumina) using Sciclone and Zephyr liquid handling robotics (PerkinElmer). Library

amount was quantified using Qubit 2.0 Fluorometric Quantitation system (Life Technologies) and the size distribution was assessed

using Experion Automated Electrophoresis System (Bio-Rad). For sequencing 6 libraries were pooled, diluted and sequenced on

Illumina HiSeq 3000/4000 using 75 bp paired-end chemistry. Base calls provided by the Illumina Realtime Analysis software were

converted into BAM format using Illumina2bam and demultiplexed using BamIndexDecoder (https://github.com/wtsi-npg/

illumina2bam).
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Measurement of Biochemistry Parameters
Serum was prepared by centrifugation of the whole blood for 20 min at 7000 rpm. Serum concentration of alanine aminotransferase,

aspartate aminotransferase and blood urea nitrogen was measured using a chemistry analyzer (IDEXX VetTest 8008, IDEXX GmbH,

Ludwigsburg, Germany).

QUANTIFICATION AND STATISTICAL ANALYSIS

Immunohistochemistry and Immunofluorescence Quantification
Immunohistochemical images were taken with Olympus BX 53 microscope and the quantification was performed using HistoQuest

TM software (TissueGnostics GesmbH, Vienna Austria). Quantification of immunofluorescence was carried out using a co-localiza-

tion pipeline of CellProfiler (version 3.1.5). Briefly, illumination was corrected using the "Regular" function and "Fit polynomial" as

smoothing method. Subsequently, images were aligned with the "Mutual information" option and objects were identified with the

following settings: size (pixels) 3-15, Threshold strategy: global, Threshold method: Otsu, with three classes thresholding, pixels

in the middle intensity class were assigned as background and objects touching the image boundary were discarded. Objects

were classified as co-localized if they touched, overlapped or enclosed each other and as not co-localized when none of the above

applied. Percentages were calculated on a per image basis and for each condition 10 images were used. Data shown is represen-

tative of three similar experiments. Displayed is the percentage of STAT1 objects that were colocalized with a STAT3 object.

Mass-Spectrometry Based Proteomics - Quantification
The data were analyzed using Proteome Discoverer version 2.2 against the Uniprot Tasmanian Devil fasta database version 2016.11

including isoforms obtained by VARSPLIC (Kersey et al., 2000) and appendedwith known contaminants (91064 sequences total). The

precursor masses were first recalibrated using the recalibration node (parameters: precursor mass tolerance: 20 ppm, fragment

mass tolerance 0.5 Da, Carbamidomethylation of cysteine as static modification). The recalibrated data were then searched using

Sequest HT (Eng et al., 1994) andMascot (v2.3.02, MatrixScience, London, U.K.) (Perkins et al., 1999) search engines with precursor

mass tolerance being 4 ppm, fragment ion tolerance was 0.3 Da, methionine oxidation used as dynamic modification, and carbami-

domethylation of cysteine as static modification in both search engines. Moreover protein N-terminal acetylation was considered as

dynamic modification in Sequest HT. Minimum length of peptides was set to 6 andmaximum number of missed cleavages was set to

two in Sequest HT and to one in Mascot. Percolator (Kall et al., 2007) was used to filter peptide-spectra matches (PSMs) at 1% false

discovery rate (FDR) and QVALITY (Kall et al., 2009) to filter identified peptides at 1%FDR. Identified proteins were also filtered at 1%

FDR by considering sum of negative logarithm of posterior error probabilities of connected PSMs. Matches against reversed fasta

database were used to estimate FDR at PSM, peptide, and protein level. Abundance of proteins was quantified using the Minora

feature detection node and integrating area under the MS1 chromatogram.

Principal component analysis was performed on 3894 out of 6672 proteins quantified in all 19 samples. We further focused on

4981/6672 proteins quantified in at least 80% of the samples. The protein abundance data was normalized by variance stabilizing

transformation (Huber et al., 2002). Missing values are imputed on normalized abundance values with the k Nearest Neighbors

(kNN) algorithm implemented in the R Bioconductor package impute (Hastie et al., 2017).

For each protein with a missing abundance in any of the samples, the kNN algorithm identifies the set of 10 most similar proteins

based on non-missing abundance values.Missing abundance is then imputed as an average abundance in that set. An average of the

signal is then performed on the k closest neighbours. Differential analysis, tumor versus the healthy, was performed between biopsies

(excluding the tumor cell line) using the limma Bioconductor package (Ritchie et al., 2015). Proteins were considered as differentially

modulated if their adjusted p value was <= 0.05 and their absolute log2 Fold Change was >=1 between tumor and healthy biopsies.

Hierarchical clustering of the 987 differentially modulated proteins was performed with Pearson’s distance measure and the average

clustering method.

DNA Methylation Analysis and Quantification
The DNAmethylation (RRBS) data were analyzed using the RefFreeDMA pipeline as described previously to avoid potential biases in

read mapping and methylation calling related to the scaffold assembly status of the published Tasmanian Devil reference genome

sarHar1 (Klughammer et al., 2015). In brief, a custom ad-hoc reference genome was deduced directly from the RRBS sequencing

reads and used for read mapping and methylation calling. Based on the thus produced DNA methylation profiles, differential DNA

methylation analysis was performed as part of the RefFreeDMA pipeline and as originally described in (Assenov et al., 2014).

Gene annotations were transferred by mapping the deduced genome fragments to the published scaffold-level Tasmanian Devil

genome sarHar1, downloaded from the UCSC genome browser. A gene annotation file was produced by joining the UCSC transcript

annotation file with the Ensembl v86 transcript annotation file of sarHar1 based on the common Ensembl transcript identifiers. Gene

promoters were defined as the region between 5000 bases downstream and 2500 bases upstream of the transcription start site.

487540 (11.37%) of the individual CpGs are situated in promoters of annotated genes. For promoter methylation analysis we focused

on a total of 69754 CpGs that are also covered in at least 80% of the samples. The significance of differential methylation throughout

promoters or deduced genome fragments was assessed by combining the p values for single CpGs within the respective promoter

regions or deduced genome fragments using an extension of the Fisher’s method as described previously (Assenov et al., 2014;

Klughammer et al., 2015).
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Western Blot Quantification
Immunoblots were quantified using ImageJ (2.0.0) software. Three independent immunoblots were used for each quantification.

Phospho-STAT3 levels were normalized to STAT3 and to loading control HSC70.

Transcriptome Expression Analysis and Variant Calling
Paired-end reads were trimmed for adaptor sequences and filtered with the trimmomatic tool (Bolger et al., 2014). Trimmed reads

were aligned on the version 7.0 of the Tasmanian Devil with the STAR aligner (Dobin et al., 2013). Counting of reads on annotated

transcripts (Sarcophilus_harrisii.DEVIL7.0.90.gtf from Ensembl) was performed with featureCounts (Liao et al., 2014). The DESeq2

Biconductor library has been used for counts normalization and differential analysis between the transcriptomes of the four DFTD

and fibroblast cell lines (Love et al., 2014). Differentially expressed genes were identified based on the following cutoffs: an average

minimum expression value between conditions of 50 reads, an absolute log fold change of 1, and an adjusted p value of

maximum 0.05. The pipeline for variant calling is based on the GATK version 3.7, following the best-practices (Van der Auwera

et al., 2013). Called variants were annotated with SNPEff v4.2 (Cingolani et al., 2012). Variants are filtered on strand bias (<30), quality

(QD > 2), coverage (DP >= 10) and allele frequency (AF = 0.5).

Network Analysis
We performed Transcription Factor and Pathway Maps enrichment on the differentially modulated entities (proteins, genes) with the

MetaCore� (Thomson Reuters, version 6.32 build 69020; cut-off for p value of enrichment 0.05). The results are reported based on

the z-score of enrichment for the transcription factors and as -log10 of the False Discovery Rate for the PathwayMaps. The 987 differ-

entially modulated proteins were integrated together with the 166 genes with differentially modulated promoters and the candidates

ERBB2 and ERBB3 from the drug-screen at the level of MetaCore interactions (Build Network functionality). Only high-confidence

direct interactions between pairs of genes are considered: protein binding, transcription factor regulation, other functional interac-

tion. 632 of the previous candidates form a direct network connection.

Motif Enrichment Analysis
We filtered individual CpG regions with less than 8 or more than 200 reads. On the remaining CpGs, we only kept those with less than

20%missing values across the 19 samples. Modulated individual CpGs between healthy and tumor samples were selected based on

an adjusted p value smaller than 0.05, and a log fold-change greater than 1 for the UP dataset (4299CpGs), and smaller than -1 for the

DOWN dataset (1727 CpGs). Fasta sequences of these fragments were extracted. We performed motif enrichment analysis with the

AME tool from the MEME package (McLeay and Bailey, 2010). We used the motif JASPAR CORE 2014 Vertebrate database (Mathe-

lier et al., 2014). Themotif enrichment for each fasta file accounts for background sequence composition by using the other sequence

file as control.

Integrating DFTD Quantifications across Techniques
The DFTD tumor cell line T1 was the only sample quantified with all three techniques: RNA-seq, proteomics andmethylation. We kept

only the annotated (no SNO) genes from the RNA-seq data and computed the expression as the number of counts divided by the

length of the gene as returned by featureCounts (Liao et al., 2014). The genes were ranked according to expression from the

most to the least expressed. The top 15%most abundant proteins (817) were selected. We performed a Gene Set Enrichment Anal-

ysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005). Pre-ranked between the top DFTD 15%most abundant proteins and the

ranked gene expression data using default parameters. For the annotated gene promoters with CpG fragments, we computed the

averagemethylation level in the promoter regions defined as -5 kb to 2.5 kb around the TSS. Similarly, we ranked the genes according

to their promoter methylation level. We selected the top 15% least methylated gene promoters (936) and performed GSEA Pre-

ranked on the ranked RNA-seq expression. Alternatively, we ranked the annotated genes detected in the DFTD cell line by both

RNA-seq and methylation data with a random method for ties. We compared the ranks of methylation and transcriptomics using

the hexbin plot in R (hexbin R package (version 1.27.2). A Spearman correlation is performed between the ranks of the two datasets.

To study potential effects on chemotaxis and cytoskeleton remodeling, we performed MetaCore Pathway Enrichments on all pro-

teins that weremodulated, be it UP or DOWN (abs(logFC) >= 1, adj.p.val <= 0.05; Table S5). Subsequently, we extracted proteins that

were differentially modulated and led to the enrichments in the following pathways linked to chemotaxis and cytoskeleton remodel-

ing: Cytoskeleton remodeling_Integrin outside-in signaling (4), Chemotaxis_SDF-1/CXCR4-induced chemotaxis of immune cells (5),

Cytoskeleton remodeling,_Regulation of actin cytoskeleton organization by the kinase effectors of Rho GTPases (9) and Cell

adhesion_Role of tetraspanins in the integrin-mediated cell adhesion (13). The respective proteins are reported in Table S5 the

chemotaxisGenes.xlsx file together with their respective modulation in the Proteomics and RNAseq datasets. Next, we generated

a heatmap based on the protein abundance values of these proteins across the biopsies, cell line, nerve, skin and spleen (clustering

distance : pearson, clustering method: average). On the right genes that were found as being bound by STAT3 across any of the

ENCODE Chip-seq datasets (Rouillard et al., 2016) were color-coded. In addition, we color-coded whether the genes were found

and/or modulated in the RNA-seq data (DFTD tumor cell lines T1-T4 vs. fibroblasts).
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Characterization of the STAT3 Inhibitor DR-1-55
To characterize drug-target binding, we performed a 19F NMR protein-ligand experiment as done previously (Ali et al., 2016; Garg

et al., 2017; Wingelhofer et al., 2018). Incubation of purified recombinant STAT3 with DR-1-55 results in line broadening of the
19F peaks from the compound, indicating a longer correlation time for the drug, which is a consequence of protein-drug binding.

Concomitantly, a release of fluoride ions is observed, the by-product of a covalent reaction of the protein and a pentafluorobenzene

containing molecule. In addition, we performed a thermal shift assay and observed a dose-dependent decrease in the denaturation

temperature of recombinant STAT3, indicative of covalent protein-ligand binding interaction (de Araujo et al., 2017).

DATA AND SOFTWARE AVAILABILITY

The data reported in this paper are tabulated in the Supplemental Information and archived at the following databases: proteomic

data in the PRoteomics IDEentification (PRIDE) database with accession number (1-20180126-165173), DNA methylation data in

the Gene Expression Omnibus (GEO) database with accession number (GSE108160) and RNA-seq data in the GEO database

with accession number (GSE108107).
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